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ABSTRACT

This dissertation examines the study of rigidity of collections of objects in various geometric spaces,

and the correspondences shared between geometries. In particular, we take a look at vectors and

lines in Lorentz (n + 1)-space, points, ideal points and hyperplanes in hyperbolic n-space, and

circles and points in the Riemann sphere. One main objective is to explore how much information

invariant to a given space is sufficient for a collection to be unique up to the transformations of

the space. The answer to this question changes with the qualities a collection of objects possesses.

To this end, this dissertation focuses on the role independence of objects plays in uniqueness. As

another primary focus, a new invariant is introduced in each geometric setting to provide a means

with which to study the rigidity of intermingled collections of objects that are infinitely far away

from one another.

The first chapter gives a history of circle, sphere, and point configurations, and the correspon-

dences between configurations of objects in hyperbolic space and Lorentz space. All theorems

stated in this chapter are well-established results and provide both motivation for studying condi-

tions for rigidity and for introducing an invariant that allows for intermingled collections of points

and spheres.

In the second chapter, the main result is established entirely within the context of Lorentz

space. An invariant of Lorentz transformations called the Lorentz ratio is defined that allows one

to work with intermingled collections of vectors and light-like lines in Lorentz space. Three main

statements are made about the rigidity of intermingled collections of vectors and light-like lines,

each relying on a linearly independent collection of subspaces spanning the entire space. Each

statement utilizes different information invariant to Lorentz space. These statements are crafted in

Lorentz space with the intention of interpreting them in other geometric spaces.

In the third chapter, a dictionary between the objects and tools of Lorentz (n + 1)-space and

those in hyperbolic n-space is outlined so that the rigidity results in chapter 2 may be interpreted

within the hyperbolic setting. Much of this information is standard and found within any given

hyperbolic geometry text; some observations about the correspondence between linear independent

vectors in Lorentz space and objects in hyperbolic space are novel. The Lorentz ratio also yields

ix



an invariant in hyperbolic space we call the hyperbolic ratio. The main rigidity result of objects in

hyperbolic space is stated at the end of the chapter.

In the final chapter, we turn our attention to the correspondence between objects in Lorentz

space, and points and spheres in the (n − 1)-sphere. There is an immediate correspondence that

arises from the fact that the (n − 1)-sphere can be taken as the ideal boundary of hyperbolic n-

space. More specifically, circles and points in the Riemann sphere enjoy a geometry not dissimilar to

points, lines, and planes in Euclidean space, so a notion of independence may be established within

this geometry. This terminology is used to give a rigidity result for configurations of intermingled

points and circles with independent collections of circles in the 2-sphere. Whereas inversive distance

is a common conformal invariant used between pairs of circles, an inversive ratio between a point

and two circles is defined so that these intermingled configurations may be considered. This chapter

ends with results on the rigidity of inversive distance circle packings that use independence as a

tool.
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CHAPTER 1

INTRODUCTION AND HISTORICAL

BACKGROUND

The rigidity of configurations of circles and points is important in several areas of complex analysis,

geometry, and topology. As evidence, one need only refer to work from Paul Koebe, E.M. Andre’ev,

and William Thurston. All three mathematicians have contributions to the study of circle packings

(circle patterns on a surface with an underlying triangulation specifying circle overlaps) in the form

of the Koebe-Andre’ev-Thurston (KAT) theorem [4]. A special case of this theorem, where all

overlaps are tangencies, is stated here.

Koebe Circle Packing Theorem ([16]). Given a triangulation K of a topological sphere, there

exists a tangency circle packing K(C) on the Riemann sphere S2 with the combinatorics of K. The

circle packing K(C) is unique up to Möbius transformations of the sphere.

This theorem is the work of Koebe in 1936. Thurston generalized this theorem to the statement

of the KAT theorem, which involves circle packings that allow for given overlaps, and allows for

triangulations of arbitrary compact orientable surfaces. In [18], Thurston states the Koebe Circle

Packing Theorem without proof, attributing it to Andre’ev rather than Koebe. Thurston was not

aware of the theorem by Koebe, but noted that his theorem for circles translated to a character-

ization of three-dimensional convex hyperbolic polyhedra, which Andre’ev accomplished in 1970.

This correspondence is seen easily when using the Klein Model of hyperbolic 3-space: in this model,

S2 serves as the ideal boundary of H3, and each face of a hyperbolic polyhedron is supported by

a Euclidean plane intersecting S2. The collection of supporting Euclidean planes intersect S2 as

a collection of circles. Thurston generalized this statement to the KAT theorem in order to build

hyperbolic structures on orbifolds.

Topologists continue to use circle packings and the KAT theorem for building hyperbolic struc-

tures on manifolds. The KAT theorem enjoys many other uses, including Thurston’s demonstration

that Koebe’s result may be used to effectively approximate the Riemann mapping from a proper
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Figure 1.1: A hyperbolic polyhedron (left), and its corresponding circle packing in S2 (right).

simply-connected, planar domain to the unit disk. In this way, circle packings are used in building

conformal tilings – tilings of surfaces with specified angle patterns. These tilings have been used

by a number of mathematicians in their effort to solve the Cannon Conjecture [10], [8], [9], [11].

For a more complete portrayal of the design and consequences of the KAT theorem, see [4].

Koebe pioneered many other statements crucial to the growth of discrete conformal geometry

in his efforts to solve his own famed uniformization conjecture.

Koebe Uniformization Conjecture ([14]). Every domain in the Riemann sphere is conformally

homeomorphic to a circle domain.

The term circle domain refers to a connected open set with complementary components, all of

which are points or closed round disks. In 1920, he showed in [15] that every finitely-connected

domain in the Riemann sphere is conformally equivalent to a circle domain, where finitely-connected

refers to finitely many boundary components of the domain in S2. This is a generalization of the

Riemann Mapping Theorem, to which Koebe’s conjecture reduces when the domain is 1-connected.

He also proved the rigidity statement that any conformal homeomorphism between two circle do-

mains with finitely many complementary components is a restriction of a Möbius transformation

[12].

Beardon and Minda, cite Koebe’s rigidity statement as a fundamental piece of machinery for

the proof of their main theorem in [3]. They prove a statement for circular regions in the extended
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Figure 1.2: A tangency circle packing of the hyperbolic plane (left), and its underlying
triangulation (right). Each vertex in the triangulation represents a circle. Each edge
between vertices means the two circles are tangent.

complex plane Ĉ, regions bounded by a collection of pairwise disjoint circles, using the conformal

invariant inversive distance, a real number measuring the separation between a pair of circles.

Definition 1.0.1. Let C1 and C2 be oriented circles in S2. When C1 and C2 are intersecting, the

inversive distance between C1 and C2, denoted (C1, C2) is

(C1, C2) = cosα,

where α is the oriented angle of intersection of C1 and C2. When C1 and C2 are disjoint,

(C1, C2) = cosh dH2(`1, `2),

where `1 = D ∩ C1, and `2 = D ∩ C2, for a disc D mutually orthogonal to C1 and C2, used as a

model of the hyperbolic plane. As such, dH2(`1, `2) is the hyperbolic distance between `1 and `2.

When the circles are unoriented, the inversive distance is the absolute value of the inversive

distance between the two circles when each is given either orientation; when the circles are oriented,

meaning an interior disk is chosen to accompany each, this choice may yield a positive or negative

inversive distance. Various equivalent formulas for inversive distance are discussed at length in the

last chapter.

3



Figure 1.3: When oriented circles C,C ′ are intersecting, −1 ≤ InvDist(C,C ′) ≤ 1 (left).
When C,C ′ are disjoint, 1 < InvDist(C,C ′) <∞, or ∞ < InvDist(C,C ′) < −1 (right).

Theorem 1.0.2 (Beardon an Minda). Suppose that Ω and Ω′ are circular regions bounded by circles

C1, . . . , Cm and C ′1, . . . , C
′
m, respectively, where m ≥ 2. There is a Möbius transformation f with

f(Ω) = Ω′ and f(Cj) = C ′j, 1 ≤ j ≤ m, if and only if (Cj , Ck) = (C ′j , C
′
k) for all j and k with

1 ≤ j < k ≤ m.

They also make the following rigidity statement for m-punctured spheres, via collections of m

points on the sphere. Here, Beardon and Minda make use of a conformal invariant of ordered

4-tuples of points, the absolute cross ratio, denoted |a, b, c, d| for points a, b, c, d in the Riemann

sphere.

Theorem 1.0.3 (Beardon and Minda). Given two collections of points p1, . . . , pm and p′1, . . . , p
′
m

in Ĉ, m ≥ 4, there is a Möbius transformation f with f(pi) = p′i for i = 1, 2, . . . ,m if and only if

|pi, pj , pk, pl| = |p′i, p′j , p′k, p′l| for all distinct 1 ≤ i, j, k, l ≤ m.

Beardon and Minda pose a series of questions at the end of [3]; namely, they ask whether

their first result can be extended by including circles which intersect, and whether both statements

generalize to higher dimensions. In [13], Crane and Short answer both questions in the affirmative,

provided reasonable conditions are met. They are also able to extend each statement to collections

of uncountably many spheres and uncountably many points. In [13], Crane and Short pose the

statement in terms of collections of balls, citing that to each sphere, one can assign an interior ball.

We do the same, using the language of oriented spheres, denoted Cα, and refer to the same sphere

with opposite orientation as Cα. The two statements are as follows.
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Theorem 1.0.4 (Crane and Short). Let {Cα : α ∈ A} and {C ′α : α ∈ A} be two collections of

oriented spheres in R̂n+1, indexed by the same set. Suppose that ∩α∈ACα = ∅. Then there is a

Möbius transformation f such that one of the following holds: either f(Cα) = C ′α for each α in A,

or else f(Cα) = C ′α for each α in A, if and only if (Cα, Cβ) = (C ′α, C
′
β) for all pairs of α and β in

A.

Theorem 1.0.5 (Crane and Short). Let {pα : α ∈ A} and {p′α : α ∈ A} be two collections of

distinct points in R̂n, indexed by the same set. There is a Möbius transformation f with f(pα) = p′α

for each α in A if and only if |pα, pβ, pγ , pδ| = |p′α, p′β, p′γ , p′δ| for all ordered 4-tuples (α, β, γ, δ) of

distinct indices in A.

Both Beardon and Minda, and Crane and Short use the term Möbius transformation to refer

to either a conformal or anti-conformal map. For our purposes, we will make the distinction

between the two by referring to a map g of Ĉ where g(z) = (az + b)/(cz + d) and ad− bc 6= 0 as a

Möbius transformation of Ĉ, while a map h where h may be either conformal or anti-conformal,

h(z) = g(z) or h(z) = g(z), will be referred to as an inversive transformation of Ĉ.

While the statements made by Beardon and Minda are reminiscent of Koebe’s work with circle

domains, there are a few differences. One is Beardon and Minda’s involvement of inversive geometry

in their statements, via the introduction of absolute cross ratio and inversive distance. The other is

that both Beardon and Minda, and Crane and Short, make two separate rigidity statements: one

for circles (spheres), and one for points. The natural question arises: Can the work of Crane and

Short (and by extension, Beardon and Minda), be generalized even further to a rigidity statement,

up to inversive transformation, of intermingled collections of spheres and points? This dissertation

demonstrates that this can be accomplished, and with markedly less conformal invariant information

used than in any of the four rigidity statements above. The obvious issue is that inversive distance

only uses circles (and spheres) as input, and the absolute cross ratio only uses points. This matter

is overcome by introducing a new conformal invariant, referred to as the inversive ratio of a point

and two spheres. The concept behind the inversive ratio is to view a point p in Sn−1 as the limit

of a sequence Cj of spheres, where, as rj → 0, Cj → p. Take two fixed spheres C and C ′ in Sn−1

not in the sequence. Then the two inversive distances (Cj , C) and (Cj , C
′) grow unbounded at

the same rate as rj → 0. Provided p does not lie in C or C ′, the ratio of these two sequences of

inversive distances limits to the inversive ratio, a real number, denoted (p, C,C ′).
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Figure 1.4: The light cone is a prominent feature of Lorentz space. Space-like vectors lie
outside the light cone, time-like vectors lie inside the light cone, and light-like vectors lie on
the light cone. For every space-like vector v, there is a time-like n-dimensional subspace V
such that for all w ∈ V, 〈v, w〉 = 0, where V intersects hyperbolic n-space in a hyperplane
P , and intersects Sn−1 in a sphere C acting as the ideal boundary of P . Light-like lines are
Lorentz orthogonal to n-dimensional light-like subspaces, intersecting the ideal boundary
of hyperbolic n-space as an ideal point. This is the basis of the correspondence used
between chapters.

In this dissertation, one objective is to state a rigidity theorem for intermingled points and

spheres; this statement is made in chapter 4. Chapters 2 and 3 develop the machinery that ulti-

mately yields this statement. Crane and Short do the work for proving their rigidity statements

in the context of Lorentz space, Rn+1 equipped with the Lorentz inner product. Here, the Lorentz

inner product of vectors v, w ∈ Rn+1 is denoted 〈v, w〉, and separates vectors in Lorentz space into

three different types, space-like, time-like, and light-like. In chapter 2, we follow the trend set by

Crane and Short and consider rigidity of vectors and light-like lines in Lorentz space, independent

of the geometric meaning in other settings. The Lorentz inner product takes vectors as input, but

for the purposes of this dissertation, a measure is needed between space-like or time-like vectors

and light-like lines. With this in mind, an invariant of Lorentz transformations, called the Lorentz

ratio of a light-like line and two fixed vectors, is given; this and a basis of vectors is used in the

main rigidity result of the chapter.

In chapter 3, we begin exploring the geometric meaning of rigidity statements made in Lorentz

space. When v and w are space-like unit vectors, they correspond to hyperplanes Pv, Pw in hy-
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perbolic n-space, and 〈v, w〉 corresponds to the hyperbolic distance between Pv and Pw. Likewise,

when v and w are positive time-like unit vectors, they correspond to points in hyperbolic n-space,

and 〈v, w〉 corresponds to hyperbolic distance between the hyperbolic points. A point a in the ideal

boundary of hyperbolic n-space is compared with hyperbolic points of hyperplanes via the corre-

spondence between the Lorentz ratio and hyperbolic ratio. Hyperbolic isometries are restrictions

of positive Lorentz transformations; the geometry of hyperbolic space and its ideal boundary are

extrinsically encoded in the geometry of Lorentz space. It is within hyperbolic space that the most

general translation of our rigidity result for vectors and light-like lines can be realized as a rigidity

statement of points, ideal points, and hyperplanes of hyperbolic n-space.

In Chapter 4, the rigidity statements in Chapter 2 are restated in the language of inversive

geometry. Special attention is given to the case in which the dimension of Lorentz Space is n +

1 = 4. Here, a rigidity statement is made for intermingled points and circles in S2, where the

collections contain an independent subcollection of 4 circles. In Euclidean space, a line can be

uniquely determined by two distinct points; a plane is determined by three linearly independent

points. In the geometry of circles, a circle line (coaxial family) can be determined by two distinct

circles. Without going into detail here, a circle-plane is determined by three independent circles in

S2, meaning three circles which do not belong to a common coaxial family of circles. Four circles

are independent if they do not all belong to a common circle-plane. Below, a corollary to one of

the main theorem’s is stated. Note that since Ω and Ω′ are circle domains, all oriented circles are

disjoint. The main rigidity theorem allows for circles with non-trivial intersection.

Theorem 1.0.6. Let Ω and Ω′ be two circle domains, respectively bounded by collections of oriented

circles and points, {Cα, pβ : α, β ∈ A} and {C ′α, p′β : α, β ∈ A}, in S2. Suppose each collection has

an independent subcollection of 4 circles, {C1, C2, C3, C4} and {C ′1, C ′2, C ′3, C ′4} respectively, where

(Ci, Cj) = (C ′i, C
′
j) for each distinct pair 1 ≤ i, j ≤ 4. Then there is an inversive transformation

φ such that one of the following holds: either φ(Cα) = C ′α and φ(pβ) = p′β for each α, β in A

or else φ(Cα) = C ′α and φ(pβ) = p′β for each α, β in A, if and only if (Cα, Ci) = (C ′α, C
′
i) and

(pβ, Ci, Cj) = (p′β, C
′
i, C

′
j) for all distinct α, β, i, j.

The other facet considered by this dissertation, in chapter 4, is whether the combinatorics of

the configurations sufficient for rigidity. As stated above, the results of Beardon and Minda and

Crane and Short, use a maximal amount of inversive distance and absolute cross ratio information,
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Figure 1.5: A tetrahedral triangulation of S2, where all edge-labels are 0. There is no
collection of circles which realizes this triangulation, so no such circle-packing exists.

whereas the main results of this dissertation use less. This is achieved by requiring an additional

(but reasonable) condition that the collections have maximally independent subcollections. While

the addition is reasonable, in Chapter 4, we end by turning our attention back to more commonly

used configurations of circles. In particular, we look at generalizations of circle packings, called

inversive distance circle packings (IDCPs). Here, adjacent circles may intersect at an angle, be

tangent, or disjoint. The edges in the corresponding triangulation are equipped with a real number

specifying the inversive distance.

Broadening the view to IDCPs creates difficulties: for one, the KAT theorem doesn’t generalize

to IDCPs. Not all edge-labeled triangulations have an IDCP realization. Seeing this is as simple

as taking a tetrahedral graph and labeling all edges with 0, depicted above. A collection of circles

{C1, C2, C3, C4}, with each Ci corresponding to vertex vi in the triangulation, would need to be such

that C1 and C2 determine a hyperbolic coaxial family of circles, AC1,C2 and circle C4 orthogonal to

both circles must necessarily be in the unique elliptic coaxial family of circles orthogonal to AC1,C2 .

The same is true of C3, but all circles in an elliptic coaxial family are disjoint, so there is no such

collection of circles realizing this edge-labeled triangulation.

Additionally, not all IDCPs are globally unique up to Möbius transformation; in [6], an example

is constructed with an octahedral graph triangulating S2, edge-labeling as assigned in figure 1.6. A
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Figure 1.6: Image from [6]. An octahedral graph, edge-labeled with inversive distances
(left); a planar circle pattern realzing the edge-labeled octahedral graph (center); Two
circle patterns non-Möbius-equivalent with inversive distance 37 on outer edges.

circle packing realizing this inversive distance pattern is called a critical packing, where the outer

circles are a minimal inversive distance from one another. There are two circle realizations of this

octahedral graph with no Möbius transformation between the two collections: the inner circles

remain fixed while the outer circles are rotated. IDCPs are special cases of circle configurations

with underlying edge-labeled polyhedral graphs (3-vertex-connected, planar graphs) — such con-

figurations are called circle-polyhedra, or c-polyhedra for short. Under this lens, powerful tools from

the rigidity theory of polyhedra may be reworked to address the uniqueness of IDCPs; the famous

Cauchy’s Rigidity Theorem is one such tool. Cauchy’s Rigidity Theorem states that two convex,

combinatorially equivalent, bounded Euclidean polyhedra with corresponding congruent faces are

themselves congruent. Convexity is a powerful notion in the discipline of polyhedral geometry (see

[17]), so it is a natural step to introduce an analogous notion for circle polyhedra.

Circles have their own geometry under Möbius transformations acting on S2, where there is a

notion of a circle point (a circle in S2), circle line, and circle plane. There is a strong connection

between circle polyhedra in S2 and projective polyhedra. If we consider RP3 = E3 ∪ RP2 as our

model of real projective space, a projective polyhedron can always be transformed to look like a

bounded Euclidean polyhedron. Within E3, the unit sphere S2 serves as the ideal boundary for

the Klein model of hyperbolic space H3. Several cases of projective polyhedra have been classified.

In [21] Andre’ev classified hyperbolic convex polyhedra with acute dihedral angles. In [20] Rivin

classified hyperbolic convex polyhedra with vertices at the ideal boundary, called ideal polyhedra.

Bao and Bonahon in [1] push those vertices past the ideal boundary to classify hyperideal polyhedra,

9



Figure 1.7: Projective polyhedra and their corresponding circle polyhedra. Left is a
hyperbolic polyhedron lying entirely within hyperbolic space, center is an ideal polyhedron
where vertices lie on the ideal boundary, and right is a hyperideal polyhedron, where
vertices push past the ideal boundary.

where every edge must intersect hyperbolic space. One primary reason topologists are interested in

ideal polyhedra is because of their use as building blocks when constructing hyperbolic 3-manifolds

[1].

Most recently, Bowers, Bowers, and Pratt in [5] explored rigidity of more general hyperideal

polyhedra. Their result is stated in terms of corresponding circle polyhedra in the 2-sphere.

Theorem 1.0.7 (BBP). Any two convex and proper non-unitary circle polyhedra with Möbius-

congruent circle faces that are based on the same oriented abstract spherical polyhedron and are

consistently oriented are Möbius-congruent.

Bowers, Bowers, and Pratt introduced a notion of convexity analogous to the definition for

Euclidean polyhedra, in that all circle points must ”lie on one side” of each circle face, bounded by

a certain inversive distance. This result directly implies that all convex IDCPs are rigid.

In general, like Euclidean polyhedra, circle-polyhedra, and IDCPs, are not convex. Rather,

what we do have with general c-polyhedra is an assumption that the c-faces are non-degenerate

(the circles realizing the vertices of a face in the polyhedral graph do not all lie in a coaxial family

of circles). With IDCPs, this affords the assumption that any four circles realizing two adjacent

faces in the triangulation must be independent. With this information, the last part of chapter

4 concerns answering the question “how much extra inversive distance information is needed to

10



make a general inversive distance circle packing of D and of S2 rigid?” Extra inversive distance

information is assumed by adding edges across edges of adjacent faces in a triangulation of D. An

algorithm for adding in enough edges to make two collections of oriented circles originating from a

circle packing is described.
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CHAPTER 2

VECTORS AND LINES IN LORENTZ SPACE

One of the main goals of this paper is to find a uniqueness statement for intermingled points and

(n−2)-spheres in Sn−1, up to Möbius transformations. Analyzing these geometric objects together

is a natural consequence of considering the ambient space, Rn+1, equipped with a non-degenerate

symmetric bilinear form, that Sn−1 lies within. Configurations of intermingled (n− 2)-spheres and

points in the (n− 1)-sphere, and hyperbolic points in Hn, correspond to configurations of vectors

and lines in Lorentz Space, and Möbius transformations correspond to Lorentz transformations.

Studying these configurations in Lorentz Space allows one to determine rigidity by taking advantage

of the ease of linear algebra computations.

In this chapter, the geometry of vectors and lines in Lorentz n-space is the focus, untethered

to its relationship with the geometry of circles. The basics of Lorentz Space and Lorentz transfor-

mations are introduced. Then, the rigidity of configurations of vectors and lines is explored using

various Lorentz invariants. Rigidity of intermingled vectors and lines is achieved by introducing

a new Lorentz invariant. In the chapter after, the correspondence between points and spheres in

Sn−1 and vectors and lines in Lorentz Space is fully detailed, so that rigidity of intermingled points

and spheres is attained.

2.1 Lorentz Space Basic Definitions and Propositions

This section contains definitions and propositions regarding Lorentz Space that will either be

relevant in this chapter or later in connecting the extrinsic geometry of Lorentz Space to the intrinsic

geometry of Circle Space. In this chapter, all objects are considered within an (n+ 1)-dimensional

setting, Rn+1. The precise vector space is defined below.

Definition 2.1.1. Let v, w be two vectors in Rn+1. The Lorentz inner product 〈v, w〉 between

v and w is

〈v, w〉 = v1w1 + v2w2 + ...+ vnwn − vn+1wn+1. (2.1)

Rn+1 equipped with the Lorentz inner product is called Lorentz space.
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Note that the Lorentz inner product is not an actual inner product: in particular, it is not

positive-definite. For example, take vectors v = (1, 2, 1, 5) and w = (1, 1, 1, 1) in R4 and observe

that 〈v, w〉 = −1. However, it is a symmetric bilinear form, and it satisfies the weaker condition of

being non-degenerate. The following definition of non-degeneracy is only true in finite-dimensional

vector spaces.

Definition 2.1.2. Let V be a finite-dimensional vector space. Let B(·, ·) denote a bilinear form on

on V . Then B(·, ·) is non-degenerate if v = 0 whenever B(v, w) = 0 for all w in V .

For finite-dimensional vector spaces, B(·, ·) is non-degenerate exactly when det [B]F 6= 0, where

[B]F is the matrix associated with B(·, ·) relative to a basis F .

Let F = {f1, . . . , fn+1} be any basis for Rn+1. Let {ei} denote the standard basis for Rn+1, and

let ω be the matrix representing the change of basis from {fi} to {ei}. For Lorentz inner product

〈·, ·〉, the associated matrix is

〈·, ·〉 = [B] =



1 0 . . . 0

0
. . .

...
...

. . . 0
0 . . . 0 1

0

0 −1


=

(
In 0

0 −1

)
. (2.2)

Note that det([B]) 6= 0. For basis F , the matrix associated with the bilinear form BF (·, ·)

is BF (·, ·) = [B]F = ω[B]ωt, where ωt is the transpose of ω. Then det([B]F ) = det(ω[B]ωt) =

det(ω) det([B]) det(ωt) = det(ω)2 det([B]) 6= 0.

Lemma 2.1.3. Let {f1, . . . , fn, fn+1} be a basis for Rn+1. Let v be a vector in Rn+1 such that

v 6= fi for each i = 1, . . . , n+ 1. If 〈v, fi〉 = 0 for every i, then v = 0.

Proof. Let F = {f1, . . . , fn, fn+1} be a basis for Rn+1. Since 〈·, ·〉 is non-degenerate, by definition,

if 〈v, w〉 = 0 for every w ∈ Rn+1, then v = 0. Since 〈v, fi〉 = 0 for every i = 1, . . . , n + 1,

then for any w = b1f1 + ... + bnfn + bn+1fn+1, we obtain 〈v, w〉 = 〈v, b1f1 + . . . + bn+1fn+1〉 =

b1〈v, f1〉+ . . .+ bn+1〈v, fn+1〉 = 0 and so v = 0.

The non-degeneracy of the Lorentz inner product is a crucial factor in the arguments for the

proceeding rigidity statements concerning vectors and lines. Vectors (and, in general, subspaces)
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in Lorentz space come in three flavors: space-like, time-like, or light-like. This categorization also

plays a key role in how vectors will interact with one another within the Lorentz inner product.

We will refer to 〈v, v〉 = ||v||2 as the Lorentz norm of v, while the Euclidean norm will be

denoted v · v = |v|2.

Definition 2.1.4. A vector is space-like if ||v||2 > 0, light-like if ||v||2 = 0, or time-like if

||v||2 < 0. Let V denote a subspace of Rn+1. Subspace V is said to be time-like if there is a

time-like v in V , space-like if every non-zero vector is space-like, and light-like otherwise. The

set of all v such that ||v||2 = 0 is called the light cone, denoted Cn.

Definition 2.1.5. Let v be a space-like or time-like vector. Vector v is a unit vector if ||v||2 = 1,

or respectively, if ||v||2 = −1.

There is no notion of a “light-like unit vector” because ||v||2 = 0 whenever v is light-like.

Definition 2.1.6. Two vectors v and w in Rn+1 are Lorentz orthogonal if 〈v, w〉 = 0.

Definition 2.1.7. Two vectors v, w in Rn+1 are Lorentz orthonormal if and only if ||v||2 = −1

and 〈v, w〉 = 0 and ||w||2 = 1.

Definition 2.1.8. Let V be a subspace of Rn+1. The subspace V L = {w ∈ Rn+1 : 〈w, v〉 = 0,∀v ∈

V } is the Lorentz complement of V .

Unlike the Euclidean scalar product, 〈v, w〉 = 0 does not mean that v and w are perpendicular,

necessarily. Indeed, the Lorentz norm of any light-like vector confirms this. As another example,

take v = (2, 0, 0, 1) and w = (1, 0, 0, 2) in R4. Then 〈v, w〉 = 0, but v · w = 4, with |v||w| = 5, so

cos θ = 4/5. We will see that a similar relationship will be set up between vectors. Consider the

following lemmas, stated in [19].

Lemma 2.1.9 ([19]). Let v and w be two nonzero vectors in Rn+1 which are Lorentz orthogonal.

If v is time-like, then w is space-like.

Lemma 2.1.10 ([19]). The subspace V is time-like in Rn+1 if and only if V L is space-like.

Since Lorentz space is a vector space, any subspace V such that dimV = m has a Lorentz

complement V L such that dimV L = n + 1 − m, and further, (V L)L = V . This means Lemma

2.1.10 can rephrased to say that Subspace V is space-like if and only if V L is time-like. Moreover,

this leads to the following corollary.
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Figure 2.1: The light cone Cn is a prominent feature of Lorentz space. Space-like vectors
lie outside the light cone, time-like vectors lie inside the light cone, and light-like vectors lie
on the light cone. More generally, a subspace is space-like if it does not intersect the light
cone, light-like if it intersects the light cone in a line, and time-like otherwise. Depicted,
v is space-like, w is light-like, and u is time-like.

Corollary 2.1.11. The subspace V is light-like if and only if V L is light-like, where V ∩ Cn =

V L ∩ Cn = `, where ` is a line through the origin.

One should note that the converse statement of Lemma 2.1.9 is not true. If v and w are Lorentz

orthogonal, and v is space-like, w may be time-like, space-like, or light-like. As an example, take

v = 〈2, 0, 0, 0〉 and w1 = 〈0, 3, 0, 0〉 in R4. Observe that both vectors are space-like because ||v||2 = 4

and ||w1||2 = 9. However, 〈v, w1〉 = 0. For time-like w2 = 〈1, 0, 0,−5〉, observe that 〈v, w2〉 = 0.

Finally, for light-like w3 = 〈0, 2, 0, 2〉, note that 〈v, w3〉 = 0.

Definition 2.1.12. A vector v in Rn+1 is positive if vn+1 > 0, and negative if vn+1 < 0.

The following statements from [19] are statements analogous to the Euclidean scalar product

statement v · w = |v||w| cos θ.

Theorem 2.1.13 ([19]). Let v, w be positive (negative) time-like vectors in Rn+1. Then

〈v, w〉 ≤ ||v||||w||, (2.3)
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with equality if and only if v and w are linearly dependent.

Corollary 2.1.14 ([19]). For positive (negative) time-like vectors v and w in Rn+1, there is a

unique nonnegative real number η(v, w) such that

〈v, w〉 = ||v||||w|| cosh η(v, w). (2.4)

Definition 2.1.15. The nonnegative real number η(v, w) is called the Lorentz time-like angle

between v and w.

Note for any two time-like unit vectors v, w that theorem 2.1.13 implies

〈v, w〉 ≤ ||v||||w|| = (
√
−1)(

√
−1) = −1.

Space-like vectors follow a similar pattern, but there are more cases to consider.

Theorem 2.1.16 ([19]). Let v and w be linearly independent space-like vectors in Rn+1 Then,

1. v and w satisfy the inequality |〈v, w〉| < ||v||||w|| if and only if the subspace V spanned by v

and w is space-like;

2. v and w satisfy the inequality |〈v, w〉| > ||v||||w|| if and only if the subspace v spanned by v

and w is time-like.

3. v and w satisfy the equation |〈v, w〉| = ||v||||w|| if and only if the subspace spanned by v and

w is light-like.

In the case of 1, there is a unique real number 0 < η(v, w) < π such that

〈v, w〉 = ||v||||w|| cos η(v, w). (2.5)

This equation holds for 3 when η(v, w) is 0 or π. Note that in this case, η(v, w) = 0 when v and

w are positive scalar multiples of one another, and η(v, w) = π when v and w are negative scalar

multiples.

Definition 2.1.17. In (2.5), the unique real number η(v, w) is called the Lorentz space-like

angle between v and w.

In case 2, there is a unique positive real number η(v, w) such that

|〈v, w〉| = ||v||||w|| cosh η(v, w). (2.6)
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Definition 2.1.18. The unique real number η(v, w) in (2.6) is called the Lorentz time-like angle

between v and w.

Observe that in the case where v and w are space-like unit vectors spanning a time-like subspace

V ,

|〈v, w〉| > ||v||||w|| = 1, (2.7)

and when v and w span a space-like subspace,

0 < |〈v, w〉| < 1. (2.8)

Theorem 2.1.19 ([19]). Let v be a space-like vector and w a positive time-like vector. Then there

is a unique nonnegative real number η(v, w) such that

|〈v, w〉| = ||v||
∣∣||w||∣∣ sinh η(v, w), (2.9)

where
∣∣||w||∣∣ denotes the absolute value of ||w||.

Definition 2.1.20. The unique nonnegative real number η(v, w) between space-like v and positive

time-like w is called the Lorentz time-like angle between v and w.

[19] clearly spells out the relationship between space-like and time-like vectors. For the purposes

of this dissertation, it is worth studying how light-like vectors interact with space-like and time-like

vectors, too. Namely, it will be useful to know when the Lorentz inner product between a light-like

vector and another vector is nonzero.

Lemma 2.1.21. Let w be any light-like vector. Let v be a vector independent from w. Then

〈v, w〉 6= 0 if one of the following is true:

1. Vector v is time-like;

2. vector v is a space-like vector, and v and w do not span a light-like subspace;

3. vector v is light-like.

Proof. This argument is handled case-by case.

Case 1: Vector v is time-like. Then by Lemma 2.1.9, 〈v, w〉 6= 0.

Case 2: Vector v is space-like, where v and w do not span a light-like subspace. Assume to

the contrary that 〈v, w〉 = 0. Note that, in general, the span of a space-like vector and a light-like
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vector is either time-like or light-like. Let V denote the subspace spanned by v and w. Since V is

assumed not to be light-like, it must be time-like. This means there is another light-like vector in

V of the form tv + w, where t 6= 0. Thus, ||tv + w||2 = t2||v||2 + 2t〈v, w〉 + ||w||2 = t2||v||2 = 0,

which is a contradiction.

Case 3: Vector v is light-like. A lemma in [13] is used when v and w are both positive or both

negative. The argument is that if v, w are two linearly independent light-like vectors, they can be

written as v = v0±|v0|en+1 and w = w0±|w0|en+1, where v0, w0 are points inRn. Then |v| =
√

2|v0|,

and |w| =
√

2|w0| so that 〈v, w〉 = v0 · w0 − |v0||w0| = v · w − 2|v0||w0| < |v||w| − 2|v0||w0| = 0.

On the other hand, assume without loss of generality that v is negative while w is positive.

Then v = v0 − |v0|en+1, and w = w0 + |w0|en+1, so 〈v, w〉 = v0 · w0 + |v0||w0| = v · w > 0.

It is possible that 〈v, w〉 = 0 for space-like v and light-like w. The above observation implies

that if v is a positive or negative space-like vector and w is a light-like vector where 〈v, w〉 = 0, then

the vectors must span a light-like subspace. Here is an example of this in R3: Let v = (2, 1, 2), and

let w = (1, 0, 1). The subspace V spanned by v and w must be light-like because for all vectors in

V that aren’t scalar multiplies of v or w have Lorentz norm ||tv + w||2 = t2 > 0, where t 6= 0.

2.2 Lorentz Transformations

Definition 2.2.1. A Lorentz transformation is a linear map of Rn+1 that preserves the Lorentz

inner product. That is, for vectors v = [v1, . . . , vn+1], w = [w1, . . . , wn+1] in Rn+1, and (n + 1) ×

(n + 1) matrix A representing a linear map, A is a Lorentz transformation if 〈vA,wA〉 = 〈v, w〉,

where vA is matrix multiplication. A Lorentz transformation is positive (resp. negative) if it

takes positive time-like vectors to positive (resp. negative) time-like vectors.

Consider the set of Lorentz transformations, denoted O(n, 1) = {A ∈ M(n + 1) : 〈vA,wA〉 =

〈v, w〉}. This set is a group under matrix multiplication, known as the Lorentz group.

Let [B] be the matrix in (6.2). For v, w in Rn+1, vBwt = 〈v, w〉. Then 〈vA,wA〉 = 〈v, w〉 implies

that vABAtwt = vBwt for all v, w. So, equivalently, the Lorentz group is written O(n, 1) = {A ∈

M(n+ 1) : ABAt = B}. Note that det(ABAt) = det(A) det(B) det(At) = det(A) det(B) det(A) =

det(B) so [det(A)]2 = 1, meaning det(A) ∈ {±1}. This means that A is invertible, and specifically,

that O(n, 1) is the set of (n + 1) × (n + 1) orthogonal matrices, such that A−1 = At, for any
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A in O(n, 1). The subset of Lorentz transformations with det(A) = 1 for each A is known as

the special Lorentz group, SO(n, 1) = {A ∈ O(n, 1) : det(A) = 1}, which is the group of

orthogonal matrices preserving orientation. The positive Lorentz group is the subset of Lorentz

group O(n, 1) restricting to the matrices corresponding to positive Lorentz transformations, denoted

O+(n, 1) = {A ∈ O(n, 1) : vn+1 > 0 ⇒ (vA)n+1 > 0}. The positive Lorentz group is naturally

isomorphic to the projective Lorentz group, O(n, 1)/{±I}, where I is the identity matrix. Within

SO(n, 1), the subset of orientation-preserving positive Lorentz transformations, SO+(n, 1) is called

the positive special Lorentz group. It should be noted that O+(n, 1) is an index 2 subgroup of

O(n, 1), and SO+(n, 1) is an index 2 subgroup of SO(n, 1).

Theorem 2.2.2 ([19]). For every dimension m ≤ n, the positive Lorentz group O+(n, 1) acts

transitively on:

1. The set of m-dimensional time-like subspaces of Rn+1;

2. The set of m-dimensional space-like subspaces of Rn+1;

3. The set of m-dimensional light-like subspaces of Rn+1.

Lemma 2.2.3 ([19]). Every A in O(n, 1) is either positive or negative.

2.3 Rigidity of Vectors and Lines in Lorentz n-Space

The word “rigidity” in this context is synonymous with the concept of global uniqueness of a

collection. When a configuration satisfying certain conditions is rigid, it means there are no other

configurations satisfying the same conditions wherein the movement between the configurations is

a non-trivial transformation. When one asks about the uniqueness of a collection of objects, the

qualifier is always “unique up to what?” In order to allow for the more general configurations of

vectors and lines, we will consider uniqueness up to Lorentz transformation. If one wants to consider

uniqueness up to positive Lorentz transformation, configurations must be composed of lines and all

positive vectors or lines and all negative vectors. At the end of the chapter, a statement is made

about what can be said about general configurations up to positive Lorentz transformation.

An integral part of tackling the question of uniqueness of a collection of objects involves asking

when one object can be uniquely placed by the information attached to it. In Euclidean geometry,

one can uniquely place a point x in Rn by knowing its distance to an maximally independent
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subcollection of n+ 1 points. That is, a collection of n+ 1 points that do not lie in a (n− 1)-

dimensional subspace.

When a collection of vectors forms a basis for a space, the maximally linearly independent

collection of vectors corresponds to a maximally independent collection of points: the common

initial point together with the terminal points. Thus, an analogous statement can be made for

vectors in Euclidean space. The following lemma shows that the same is true for vectors in Lorentz

space.

Lemma 2.3.1. Let {vi} be a collection of n + 1 vectors forming a basis in Rn+1. For vectors v

and v′ not in the basis, if 〈v, vi〉 = 〈v′, vi〉 for each i, then v = v′.

Proof. Let {vi} be a collection of vectors in Rn+1 that form a basis for the space. Let v and v′ be

two vectors distinct from all vi in the basis. Assume 〈v, vi〉 = 〈v′, vi〉 for each i. Since 〈·, ·〉 is a

bilinear form, we get that 〈v, vi〉 − 〈v′, vi〉 = 〈v − v′, vi〉 = 0 for each i.

We set out to show v − v′ is not equal to vj for some j. Assume to the contrary that there is

some j so that v− v′ = vj . Then vj is a basis element such that 〈vj , vi〉 = 0 for all i. In particular,

〈vj , vj〉 = 0, so vj is light-like. The set {vi : ∀i 6= j} is a basis for an n-dimensional subspace V

of Rn+1. For any u in V , u = Σibivi, so 〈vj , u〉 = 〈vj ,Σibivi〉 = Σibi〈vj , vi〉 = 0. This makes vj

the Lorentz complement of V . But vj is light-like, meaning V would also have to be a light-like

subspace containing vj , which is a contradiction.

By Lemma 2.1.3, then v − v′ = 0, and thus v = v′.

In [13], the rigidity of vectors in Lorentz space uses knowing the Lorentz inner product between

every pair of vectors in the configuration as a condition. To cut down on the amount of Lorentz

inner product information required, the condition is added that the configurations contain a basis

for Rn+1 within each collection.

Requiring a basis in each collection satisfying the same Lorentz inner product information also

serves the purpose of generating the Lorentz transformation between the configurations via the

change-of-basis map.

Lemma 2.3.2. Let {vi} and {v′i} be two collections of vectors, with i = 1, ..., n+ 1, each forming

a basis for Rn+1. If 〈vi, vj〉 = 〈v′i, v′j〉 for each i, then there is a unique Lorentz transformation Φ

such that Φ(vi) = v′i for every i.
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Proof. Let {vi} and {v′i} each be a basis of vectors for Rn+1, and assume 〈vi, vj〉 = 〈v′i, v′j〉 for each

i. Let Φ be the unique bijective linear map (the change-of-basis map) that satisfies Φ(vi) = v′i for

each i. Let x = Σiaivi and y = Σjbjvj in Rn+1. Then 〈Φ(x),Φ(y)〉 = 〈Φ(Σiaivi),Φ(Σjbjvj)〉 =

〈ΣiaiΦ(vi),ΣibjΦ(vj)〉 = Σi,jaibj〈Φ(vi),Φ(vj)〉 = Σi,jaibj〈v′i, v′j〉 = Σi,jaibj〈vi, vj〉 = 〈x, y〉, so Φ is

a Lorentz transformation.

With lemmas 2.3.1 and 2.3.2 in place, we are now ready to assess the rigidity of configurations

of vectors and light-like lines over several cases in which varying conditions are applied. The first

statement involves using the Lorentz inner product between vectors only. This theorem is used in

proving the other cases in which light-like lines are involved and other Lorentz invariants are used.

Introducing multiple Lorentz invariants gives the user more than one tool to use with vectors and

light-like lines in Lorentz space.

2.3.1 The Rigidity of Vectors Using the Lorentz Inner Product.

In [13], Crane and Short state that a collection of vectors with a maximal amount of Lorentz

inner product information known is unique up to Lorentz transformation.

Theorem 2.3.3 (Crane and Short). Let {vα : α ∈ A} and {v′α : α ∈ A} be two collections of

vectors in Rn+1 such that 〈vα, vβ〉 = 〈v′α, v′β〉 for all pairs of α and β in A. Suppose that the

subspace spanned by the vα is either time-like or space-like. Then there is a Lorentz transformation

Φ with Φ(vα) = v′α for each α in A.

In the following theorem, the collections of vectors and subcollections of basis vectors may

involve any combination of space-like, time-like, or light-like vectors.

Theorem 2.3.4. Let {vα : α ∈ A} and {v′α : α ∈ A} be two collections of distinct vectors in Rn+1,

indexed by the same set, with at least n+ 1 elements {vi} and {v′i}, respectively, that form a basis.

Then 〈vα, vi〉 = 〈v′α, v′i〉 for each α, i, if and only if there is a unique Lorentz transformation Φ such

that Φ(vα) = v′α. for every α ∈ A.

Proof. Let {vα : α ∈ A} and {v′α : α ∈ A} be two collections as described above. The reverse

direction of this proof is trivial. Assume 〈vα, vi〉 = 〈v′α, v′i〉 for each i, where vi 6= vα, v′i 6= v′α.

Since {vi} and {v′i} each form a basis of Rn+1, where 〈vi, vj〉 = 〈v′i, v′j〉 for each i 6= j, by Lemma

2.3.2, there is a unique Lorentz transformation Φ such that Φ(vi) = v′i for each i. Since Φ is a
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Lorentz transformation, observe that 〈Φ(vα), v′i〉 = 〈Φ(vα),Φ(vi)〉 = 〈vα, vi〉 = 〈v′α, v′i〉 for α 6= i.

So 〈Φ(vα) − v′α, v
′
i〉 = 0 for each i, and every α 6= i. Thus, by Lemma 2.3.1, we obtain that

Φ(vα)− v′α = 0, so Φ(vα) = v′α for every α.

To compare this result with [13], when the collections of vectors is finite of order m, where

m ≥ n+ 1, Crane and Short require m(m−1)/2, Lorentz inner product pairs. With theorem 2.3.4,

the amount of required pairs is reduced to (n+ 1)(m− (n+ 1)).

2.3.2 The Rigidity of Light-Like Lines Using the Absolute Cross Ratio of Lines

In situations where the setting is restricted to the light cone, one may wish to work with light-

like lines rather than a specific vector in that line. In this case, one can employ the use of a Lorentz

invariant of four light-like lines, defined in [13].

Definition 2.3.5 (Crane and Short). Let `1, `2, `3, and `4 be lines in Rn+1 through the origin and

a point (x1, ..., xn, 1), where x = (x1, ..., xn) is a point in Sn−1 (light-like 1-dimensional subspaces

of Rn+1). For each `i, choose a vector vi in `i. The absolute cross ratio of lines, denoted

|`1, `2, `3, `4|, is defined to be

|`1, `2, `3, `4| =
〈v1, v3〉〈v2, v4〉
〈v1, v2〉〈v3, v4〉

. (2.10)

The absolute cross ratio of lines is clearly a Lorentz invariant of the ordered 4-tuple. It is also

independent of the choice of light-like vi in `i for each 1 ≤ i ≤ 4. To see this, let λivi be any other

nonzero vector in `i, where λi is some nonzero real number. Then

|`1, `2, `3, `4| =
〈λ1v1, λ3v3〉〈λ2v2, λ4v4〉
〈λ1v1, λ2v2〉〈λ3v3, λ4v4〉

=
λ1λ3λ2λ4〈v1, v3〉〈v2, v4〉
λ1λ2λ3λ4〈v1, v2〉〈v3, v4〉

=
〈v1, v3〉〈v2, v4〉
〈v1, v2〉〈v3, v4〉

. (2.11)

Note also that the absolute cross ratio of lines is indeed a positive value, because 〈vi, vj〉 < 0 for

each i, j pair. Consider the following theorem from [13].

Theorem 2.3.6 (Crane and Short). Given two collections of light-like lines {`α : α ∈ A} and

{`′α : α ∈ A}, there is a positive Lorentz transformation Φ with Φ(`α) = `′α for each α in A if and

only if |`α, `β, `γ , `σ| = |`′α, `′β, `′γ , `′σ| for all ordered 4-tuples (α, β, γ, σ) of distinct indices in A.
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The following theorem is a direct result of modifying Theorem 2.3.6. Crane and Short utilize

the absolute cross ratio between every 4-tuple of lines, but, using theorem 2.3.4, one can trim down

the number of 4-tuples assessed.

Since we are assessing the rigidity of lines instead of vectors in this section, we are back to

considering maximally independent collections of lines rather than a basis of vectors.

Definition 2.3.7. A collection of lines {`i} of size n+ 1 in Rn+1 is maximally independent if

the collection {vi} of vectors, where vi 6= 0 is in `i for each i, is a basis for Rn+1.

Theorem 2.3.8. Let {`α : α ∈ A} and {`′α : α ∈ A} be two collections of distinct light-like lines

in Rn+1, each with subcollections of n + 1 lines {`i} and {`′i}, respectively, that are maximally

independent in Rn+1. Then,

|`α, `i, `j , `k| = |`′α, `′i, `′j , `′k|,

for every distinct triplet (i, j, k) in the independent subcollection index, and all α, if and only if

there is a unique positive Lorentz transformation Φ such that Φ(`α) = `′α, for all α ∈ A.

Proof. The converse direction of the statement is trivial. Assume |`α, `i, `j , `k| = |`′α, `′i, `′j , `′k|, for

every distinct triplet (i, j, k) in the independent subcollection index, and all α. Each `α will be rep-

resented with a chosen light-like vector vα in `α. Choose v1, v2, v3 and v′1, v
′
2, v
′
3 so that 〈v1, v2〉 =

〈v′1, v′2〉, 〈v1, v3〉 = 〈v′1, v′3〉, and 〈v2, v3〉 = 〈v′2, v′3〉. Choose vα such that 〈vα, v2〉 =
−〈v2, v3〉
〈v1, v3〉

,

and similarly, 〈v′α, v′2〉 =
−〈v′2, v′3〉
〈v′1, v′3〉

, so that 〈vα, v2〉 = 〈v′α, v′2〉. Then, since |vα, v1, v2, v3| =

|v′α, v′1, v′2, v′3|, we get that 〈vα, v1〉 = 〈v′α, v′1〉. Now, |vα, vi, vj , vk| = |v′α, v′i, v′j , v′k|, for all dis-

tinct (i, j, k) in the independent subcollection index, so in particular, |vα, vi, v1, v2| = |v′α, v′i, v′1, v′2|,

meaning

〈vα, v1〉〈vi, v2〉
〈vα, vi〉〈v1, v2〉

=
〈v′α, v′1〉〈v′i, v′2〉
〈v′α, v′i〉〈v′1, v′2〉

, (2.12)

for all i 6= 1, 2, α. By design, 〈v1, v2〉 = 〈v′1, v′2〉, and 〈vi, v2〉 = 〈v′i, v′2〉, so 〈vα, vi〉 = 〈v′α, v′i〉, for all

α, and all i. Applying theorem 2.3.4, there is a Lorentz transformation Φ such that Φ(vα) = v′α

and consequently Φ(`α) = `′α for all α. Either Φ is positive, or −Φ is positive. If Φ is positive, then

we’re done. If −Φ is positive, −Φ(vα) = −v′α for all α, and so it is still true that −Φ(`α) = `′α for

all α.
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The absolute cross ratio of lines is used here because it translates to a statement involving the

absolute cross ratio of points (seen in the proceeding chapter). This is the information that is

commonly used as a conformal invariant of points, so we maintain using this invariant within the

context of the above proof.

2.3.3 Rigidity of Space-Like Vectors, Time-Like Vectors and Light-Like Lines
Using the Lorentz Ratio

This section shows that the absolute cross ratio of lines can be modified to produce another kind

of Lorentz invariant that can be used more generally with light-like lines and space-like or time-like

vectors. There is a secondary motive for introducing another Lorentz invariant outside the context

of Lorentz Geometry. This Lorentz invariant is introduced because the Lorentz inner product

of a light-like vector and space-like vector or time-like vector does not correspond to geometric

information between spheres and points in Sn−1. In this section, we view light-like lines as the limit

of a sequence of space-like or time-like unit vectors as a means to remedy this issue.

Definition 2.3.9. Let {vt} be a sequence of all positive (negative) space-like, or all positive (nega-

tive) time-like, unit vectors. Let ` be a light-like line, and let w` be any positive (negative) light-like

vector in `. Then {vt} converges to ` as t→∞ if for every ε > 0, there is an N > 0 such that

for all t ≥ N , |](vt, w`)| < ε, where ](vt, w`) denotes the Euclidean angle between w` and each vt.

Several observations can be made from this definition.

Observation 1. Let {vt} be a sequence following the conditions in definition 2.3.9, converging

towards a light-like line `. Let w` be any positive vector in `. Say w` has component form

w` = (w`1, . . . , w`n, w`(n+1)). Then for each t, vt can always be written as

vt =
(√

λ2
1(t)w2

`1 ± 1, λ2(t)w`2, . . . , λn(t)w`n, λn+1(t)w`(n+1)

)
, (2.13)

where λ2
1(t)w2

`1 + ...+λ2
n(t)w2

`n−λ2
n+1w`(n+1) = 0 for each t, and ±1 in the first coordinate depends

on whether vt is a sequence of space-like or time-like vectors. Moreover, |λi(t)| → ∞ and
λi(t)

λj(t)
→ 1

as t→∞ for each i, j. This is because
vt · w`

|vt||w`| cos θ
→ 1 as θ → 0, where θ = ](vt, w`).

Observation 2. Let w`(t) be a sequence of vectors in ` such that

w`(t) = (λ(t)w`1, . . . , λ(t)w`n, λ(t)w`(n+1)), (2.14)
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Figure 2.2: The vectors in {vt} are required to be unit vectors so that each vector’s
terminal point lies in the hyperboloid outside Cn if the vt are space-like (shown in blue),
and inside Cn if the vt are time-like (shown in green). With this being the case, for
light-like line ` (shown in red), as ](vt, `) converges to 0, Observation 3 holds.

where λ(t) = λn+1(t) for each t. As a result, λi(t) → λ(t) for each i as t → ∞, so the vector

vt − w`(t)→ 0 as t→∞.

Observation 3. Let u be a positive (negative) vector and let ` be a light-like line, where the

2-dimensional subspace spanned by u and ` is not light-like. Let vt be a sequence of all space-like

or all time-like unit vectors converging to the light-like line `. Then as vt → `, |〈vt, u〉| → ∞.

Let v` be some light-like vector in `. Let w`(t) be the sequence of vectors in ` with the same

scalar in the (n+1)-coordinate as vt for each t. Let λ(t) be the sequence of real nonzero scalars such

that w`(t) = λ(t)v` for each t. As vt → `, since vt−w`(t)→ 0, we get that |〈vt, u〉| → |〈w`(t), u〉| =

|λ(t)〈v`, u〉|, where |λ(t)| → ∞ as t→∞. Since by Lemma 2.1.21, 〈v`, u〉 6= 0, it is concluded that

|λ(t)〈v`, u〉| → ∞.

The following is the Lorentz invariant introduced for the purposes of comparing light-like lines

to vectors.

Definition 2.3.10. Let {vt} be a sequence of all positive (negative) space-like, or all positive (neg-

ative) time-like unit vectors converging to a light-like line `. Then for any two vectors u1, u2 such
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that the subspace spanned by ` and ui is not light-like for each i, the Lorentz ratio of `, u1, and

u2, denoted (`, u1, u2), is

(`, w1, w2) = lim
t→∞

〈vt, u1〉
〈vt, u2〉

. (2.15)

Observation 4. The Lorentz ratio (`, u1, u2) can be positive or negative.

The Lorentz ratio will be useful as defined within the geometry of spheres and points in Sn−1,

but as it stands, it is an awkward measurement to require when only considering vector space

information. The next lemma provides a convenient observation about the Lorentz ratio.

Lemma 2.3.11. Let {vt} be a sequence of all positive (negative) space-like, or all positive (nega-

tive) time-like, unit vectors such that vt converges to light-like line ` as t→∞. Let v` be any vector

in `. Then

lim
t→∞

〈vt, u1〉
〈vt, u2〉

=
〈v`, u1〉
〈v`, u2〉

(2.16)

for any two vectors u1, u2, where the subspace spanned by ` and ui is not light-like for each i.

Proof. Let ` be a light-like line, let v` be any light-like vector in `, and without loss of generality.

let {vt} be a sequence of positive (negative) space-like unit vectors such that vt → ` as t → ∞.

The following argument is still valid if {vt} is instead a sequence of positive (negative) time-like

unit vectors limiting toward line `. Let u1, u2 be two vectors such that the subspace spanned by `

and ui is not light-like for each i.

Let ε > 0. First note that if there is an N > 0 such that for all t ≥ N ,

|〈vt, u1〉〈v`, u2〉 − 〈v`, u1〉〈vt, u2〉| < ε

then the statement is proven, because∣∣∣∣〈vt, u1〉
〈vt, u2〉

− 〈v`, u1〉
〈v`, u2〉

∣∣∣∣ =

∣∣∣∣〈vt, u1〉〈v`, u2〉 − 〈v`, u1〉〈vt, u2〉
〈vt, u2〉〈v`, u2〉

∣∣∣∣,
and as t→∞, |〈vt, u2〉〈v`, u2〉| → ∞.

Let w`(t) be the sequence of light-like vectors in `, parametrized by t, such that w`(n+1)(t) =

vt(n+1) for each t. Since vt → ` as t→∞, for every ε > 0, there exists N > 0 such that for all t ≥ N ,
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|vt − w`(t)| < ε. Consequently, for every ε > 0, there is an Ni > 0 for each i = 1, 2 such that for all

t ≥ Ni, |〈vt, ui〉 − 〈w`(t), ui〉| = |〈vt − w`(t), ui〉| < ε. In particular, let ε0 =
ε

|〈v`, u2〉|+ |〈v`, u1〉|
.

Let N0 = max{N1, N2} so that for all t ≥ N0, |〈vt, ui〉 − 〈w`(t), ui〉| <
ε

|〈v`, u2〉|+ |〈v`, u1〉|
for

i = 1, 2.

For each t, correct v` by λ(t) so that λ(t)v` = w`(t).

Then for all t ≥ N0,

|〈vt, u1〉〈v`, u2〉 − 〈v`, u1〉〈vt, u2〉| =
1

|λ(t)|
|〈vt, u1〉〈w`(t), u2〉 − 〈w`(t), u1〉〈vt, u2〉|

=
1

|λ(t)|
|〈vt, u1〉〈w`(t), u2〉 − 〈w`(t), u1〉〈w`(t), u2〉

+〈w`(t), u1〉〈w`(t), u2〉 − 〈w`(t), u1〉〈vt, u2〉|

≤ 1

|λ(t)|
(|〈vt, u1〉〈w`(t), u2〉 − 〈w`(t), u1〉〈w`(t), u2〉|

+ |〈w`(t), u1〉〈w`(t)u2〉 − 〈w`(t), u1〉〈vt, u2〉|)

=
1

|λ(t)|
(|〈w`(t), u2〉| |〈vt, u1〉 − 〈w`(t), u1〉|

+ |〈w`(t), u1〉| |〈vt, u2〉 − 〈w`(t), u2〉|)

<
1

|λ(t)|

(
|〈w`(t), u2〉|

ε

|〈v`, u2〉|+ |〈v`, u1〉|

+ |〈w`(t), u1〉|
ε

|〈v`, u2〉|+ |〈v`, u1〉|

)

=


∣∣∣〈w`(t)

λ(t) , u2〉
∣∣∣

|〈v`, u2〉|+ |〈v`, u1〉|
+

∣∣∣〈w`(t)
λ(t) , u1〉

∣∣∣
|〈v`, u2〉|+ |〈v`, u1〉|

 ε

=

(
|〈v`, u2〉|

|〈v`, u2〉|+ |〈v`, u1〉|
+

|〈v`, u1〉|
|〈v`, u2〉|+ |〈v`, u1〉|

)
ε

= ε.

Using equality (2.16), it is clear that the Lorentz ratio is a Lorentz invariant, since for any

Lorentz transformation T , light-like line `, and space-like or time-like vectors w1, w2, observe that

(T (`), T (w1), T (w2)) =
〈T (v`), T (w1)〉
〈T (v`), T (w2)〉

=
〈v`, w1〉
〈v`, w2〉

= (`, w1, w2).

Employing the Lorentz ratio, we now have an alternate means of determining the rigidity of

intermingled collections of vectors and light-like lines in Lorentz Space. The following theorem was

crafted with the intention of interpreting it geometrically as the most general version of a rigidity
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statement for intermingled collections of spheres and points in Sn−1. Some Corollaries are stated

at the end that are also Corollaries of the other main theorems.

Theorem 2.3.12. Let {vα, vβ, `γ : α, β, γ ∈ A} and {v′α, v′β, `′γ : α, β, γ ∈ A} be two collections of

distinct space-like vectors, time-like vectors, and light-like lines, respectively, in Rn+1, where each

of `γ , `
′
γ , respectively do not span a light-like subspace with any of vα, v

′
α or vβ, v

′
β, and with at least

n+1 space-like (or time-like) vectors {vi} and {v′i}, respectively, that form a basis for Rn+1. Then,

〈vα, vi〉 = 〈v′α, v′i〉, 〈vβ, vi〉 = 〈v′β, v′i〉,

for each i, for all space-like vectors vα, v′α, for all time-like vectors vβ, v′β, and (`γ , vi, vj) =

(`′γ , v
′
i, v
′
j), for each distinct pair i, j in the independent subcollection index, and all light-like `γ , `

′
γ

if and only if there is a unique Lorentz transformation Φ such that Φ(vα) = v′α, Φ(vβ) = v′β, and

Φ(`γ) = `′γ for all α, β, γ ∈ A.

Proof. Let {vα, vβ, `γ : α, β, γ ∈ A} and {v′α, v′β, `′γ : α, β, γ ∈ A} be two collections of space-like

and time-like vectors, and light-like lines, with respective independent subcollections of space-like

(or time-like) vectors {vi}, {v′i}, each forming a basis of Rn+1. If there is a Lorentz transformation

Φ such that Φ(vα) = v′α,Φ(vβ) = v′β, and Φ(`γ) = `′γ , then trivially, 〈vα, vi〉 = 〈v′α, v′i〉, 〈vβ, vi〉 =

〈v′β, v′i〉, and (`γ , vi, vj) = (`′γ , v
′
i, v
′
j), for each distinct pair i, j, and all α, β, γ ∈ A. Assume,

conversely, that 〈vα, vi〉 = 〈v′α, v′i〉, 〈vβ, vi〉 = 〈v′β, v′i〉, and (`γ , vi, vj) = (`′γ , v
′
i, v
′
j), for each distinct

pair i, j, and all α, β, γ ∈ A. The only work to be done is to show the assumption that (`γ , vi, vj) =

(`′γ , v
′
i, v
′
j) implies 〈vγ , vi〉 = 〈v′γ , v′i〉 for each i, and chosen vγ , v

′
γ in all `γ , `

′
γ respectively. Choose

vγ in each `γ and v′γ in each `′γ such that 〈vγ , v1〉 = 〈v′γ , v′1〉. This can always be done. Using

our assumptions for j = 1, and i 6= 1, (`γ , vi, v1) = (`′γ , v
′
i, v
′
1) means

〈vγ , vi〉
〈v′γ , v1〉

=
〈v′γ , v′i〉
〈v′γ , v′1〉

, so using

theorem 2.3.4, there is a Lorentz transformation Φ such that Φ(vα) = v′α,Φ(vβ) = v′β, and Φ(vγ) =

v′γ , which by extension means Φ(`γ) = `′γ for all α, β, γ ∈ A.

Corollary 2.3.13. In the set up of the previous statement, Φ is either a positive Lorentz transfor-

mation, or −Φ is a unique positive Lorentz transformation such that −Φ(vα) = −v′α,−Φ(vβ) = −v′β,

and −Φ(`γ) = `′γ.

Corollary 2.3.14. Let {vα, vβ, `γ : α, β, γ ∈ A} and {v′α, v′β, `′γ : α, β, γ ∈ A} be two collections of

space-like vectors, time-like vectors and light-like lines, respectively, in Rn+1, where each of `γ and
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`′γ respectively do not span a light-like subspace with any of vα, v
′
α or vβ, v

′
β. Suppose each collection

has a subcollection of the same order, {vi} and {v′i} that is maximally linearly independent in

the collection, where 〈vα, vi〉 = 〈v′αv′i〉 for each distinct i, α, and (`γ , vi, vj) = (`′γ , v
′
i, v
′
j) for each

distinct triple γ, i, j. Then if {vi} and {v′i} span a time-like or space-like subspace, there is a Lorentz

transformation φ such that φ(vα) = v′α, φ(vβ) = v′β, and φ(`γ) = `′γ for every α, β, γ in A.

This last corollary is an observation based upon the fact that space-like and time-like subspaces

are non-degenerate. If one collection is time-like (resp. space-like), then necessarily, the other

collection is time-like (resp. space-like). By Theorem 2.2.2, the positive Lorentz transformations

act transitively on m-dimensional time-like and space-like subspaces. Note that the main theorem

provides a unique Lorentz transformation, while for the corollary, it is possible to have more than

one Lorentz transformation satisfying the statement.
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CHAPTER 3

POINTS, IDEAL POINTS, AND HYPERPLANES

OF HYPERBOLIC N-SPACE

In chapter 2, we explored the geometry of Lorentz Space, independent of external motivations. One

reason for this is to observe that Lorentz Space, on its own, is a rich setting where geometric results

are handled easily through Linear Algebra. The secondary motivation is to study geometric state-

ments in Lorentz Space. While hyperbolic geometry can be set up and considered as a standalone

geometry, there is much insight to be gained by considering hyperbolic space within the context of

Lorentz Space.

In this chapter a dictionary is set up between the language of (n+1)-dimensional Lorentz Space

and the language of hyperbolic n-space. A good reference for this is [19]. What isn’t included in

[19] is a characterization of how collections of objects in hyperbolic n-space behave when they

correspond to a basis of vectors in Rn+1. We fill this information in after the foundation is laid.

Simple but vital observations are pieced together to craft a rigidity result for points, ideal points

and hyperplanes of hyperbolic n-space from the main result in the previous chapter.

3.1 Hyperboloid Model of Hyperbolic n-Space in Rn+1

Consider the set of points

Hn = {x ∈ Rn+1 : ||x||2 = −1, xn+1 > 0}.

This set describes the positive sheet of an n-dimensional hyperboloid Fn = {x ∈ Rn+1 : ||x||2 =

−1} in Rn+1, centered at the origin. Let x, y be two points in Hn. Note that x and y can be thought

of as positive time-like unit vectors in (n+ 1)-dimensional Lorentz space, and every positive time-

like unit vector in Rn+1 represents a point in Hn. Let η(x, y) be the Lorentz time-like angle between

x and y. Then the hyperbolic distance between x and y can be defined as

dH(x, y) = η(x, y),
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Figure 3.1: Points in the hyperboloid model of hyperbolic space, H2, and corresponding
time-like vectors in 3-dimensional Lorentz space.

so that 〈x, y〉 = − cosh dH(x, y). The set Hn, together with dH(·, ·) is the hyperboloid model of

hyperbolic n-space . For a proof that dH(·, ·) is the hyperbolic metric on Hn, see [19], theorem

3.2.2.

This connection between positive time-like unit vectors Rn+1 and points in hyperbolic n-space

is our first established correspondence between a geometric object in Hn and a vector space ob-

ject in Rn+1. We continue with this endeavor throughout the section. Our next focus is on the

transformations of each setting.

3.1.1 Isometries of Hyperbolic n-space

From Chapter 2, we know that the positive Lorentz transformations are an index 2 subgroup of

the Lorentz transformations, and that all Lorentz transformations are either positive or negative.

Considering that Hn is the positive sheet of Fn, and using theorem 2.2.2, we can now make the

following statement.
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Figure 3.2: Two points in determine a hyperbolic line; this corresponds to two linearly
independent positive time-like unit vectors determining a time-like subspace. This time-
like subspace intersects the hyperboloid model as a hyperbolic line.

Theorem 3.1.1 ([19]). Every positive Lorentz transformation of Rn+1 restricts to an isometry of

Hn and every isometry of Hn extends to a unique positive Lorentz transformation of Rn+1.

Corollary 3.1.2. The group of hyperbolic isometries I(Hn) is isomorphic to the positive Lorentz

group O+(n, 1).

Corollary 3.1.3. The positive special Lorentz group SO+(n, 1) is isomorphic to the group of

orientation-preserving isometries of Hn, denoted I+(Hn).

With this fact in place, we can view hyperbolic geometry under the lens of Lorentz geometry,

where the isometric invariants of Hn can be expressed in formulas involving Lorentz inner products.

3.1.2 Hyperbolic Lines

Definition 3.1.4. A hyperbolic line of Hn is the intersection of Hn with a 2-dimensional time-

like vector subspace of Rn+1.

For two points x and y in Hn, the span of x and y is a 2-dimensional time-like subspace V (x, y)

of Rn+1, and

L(x, y) = Hn ∩ V (x, y) (3.1)
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is the unique hyperbolic line of Hn containing both x and y. The intersection L(x, y) is a branch

of a hyperbola.

Definition 3.1.5. Three points x, y, z in Hn are hyperbolically collinear if and only if there is

a hyperbolic line L of Hn containing x, y, z.

Lemma 3.1.6 ([19]). If x, y, z are points of Hn and

η(x, y) + η(y, z) = η(x, z), (3.2)

then x, y, z are hyperbolically collinear.

Theorem 3.1.7 ([19]). A function λ : R → Hn is a geodesic line if and only if there are Lorentz

orthonormal vectors x, y in Rn+1 such that

λ(t) = (cosh t)x+ (sinh t)y (3.3)

Theorem 3.1.8 ([19]). The geodesics of Hn are its hyperbolic lines.

Definition 3.1.9. A tangent vector to Hn at a point x of Hn is defined to be the derivative

at 0 of a differentiable curve γ : [−b, b]→ Hn such that γ(0) = x. The set of all tangent vectors to

Hn at x is called the tangent space of Hn at x, and is denoted Tx = Tx(Hn).

Lemma 3.1.10 ([19]). Let Tx = Tx(Hn) be the set of all tangent vectors to Hn at x. Then

Tx = {y ∈ Rn+1 : 〈x, y〉 = 0}. (3.4)

From the above lemma, the tangent space Tx of a given x in Hn is n-dimensional and space-like

in Rn+1. That is, Tx = 〈x〉L, where 〈x〉L is the Lorentz complement of the subspace spanned by x.

Definition 3.1.11. Let λ : R→ Hn and and µ : R→ Hn be geodesic lines such that λ(0) = µ(0).

Then λ′(0) and µ′(0) span a space-like vector subspace of Rn+1. The hyperbolic angle between λ

and µ is the Lorentz space-like angle between λ′(0) and µ′(0).
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3.1.3 Light-Like Lines Correspond to Ideal Points

Hyperbolic space comes equipped with an ideal boundary, ∂Hn, made up of points at infinity.

We consider another model of hyperbolic n-space in order to deduce what kind of vector subspace

corresponds to points in the infinite boundary of Hn.

Hyperbolic n-space is also expressed through the Klein-Beltrami model of hyperbolic n-

space , Hn, where hyperbolic n-space is identified with the unit ball Bn, and the ideal boundary of

Hn is identified with the unit sphere Sn−1. The isometry ψ takes the unit ball Bn to Hn:

(x1, . . . , xn) 7→
(

2x1

1− |x|2
, . . . ,

2xn
1− |x|2

,
1 + |x|2

1− |x|2

)
. (3.5)

This map extends to take point a = (a1, . . . , an) in Sn−1 to the light-like line through 0 and

(a1, . . . , an, 1). Thus, points in the ideal boundary of hyperbolic n-space, or ideal points, are

represented by light-like lines, and every light-like line represents an ideal point.

The reader should note that there is a marked distinction between representing a point in Hn

with a time-like vector in Rn+1, and representing a point in ∂Hn with a light-like line, rather than a

particular light-like vector within the line. Points in Hn can be represented with a specific time-like

vector because of the relationship between hyperbolic distance of points and Lorentz inner product

of time-like vectors. Picking positive time-like unit vectors yields a well-defined correspondence.

However, for two sequences of points, xa(t) and yb(t) in Hn, approaching points a and b in ∂Hn

respectively, dH(xa(t), yb(t))→∞ as t→∞, so a and b are infinitely far away from each other in

the hyperbolic metric. Picking a specific vector to represent each of a and b within Rn+1 would

imply, by continuity, that there is a finite hyperbolic distance between them. This issue is resolved

by representing ideal points a and b with light-like lines `a and `b, respectively.

One may naturally wonder what measurement between ideal points in ∂Hn is preserved if

hyperbolic distance cannot be used. This is the motivation for looking at the rigidity of vectors

and light-like lines under various conditions in chapter 2. Theorem 2.3.4 does not take on geometric

meaning, as is, in Hn. Further along in this section, we craft a hyperbolic invariant between ideal

points and objects in Hn. For an invariant of ideal points only, see the next chapter, where the

Klein-Beltrami model of hyperbolic n-space is covered in more detail. We will use this model to

talk about the role of vectors and lines in Lorentz Space play in generating the geometry of points

and spheres in Sn−1.
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3.1.4 Space-like Vectors Correspond to Hyperbolic Hyperplanes

Points and lines in Hn ∪ ∂Hn discussed, and from this, we have found a hyperbolic geometric

meaning for light-like lines and time-like vectors. Now, we generalize to higher-dimensional objects

in Hn, and it may come as no surprise that space-like vectors are involved in this last territory. In

this way, every one-dimensional subspace of Rn+1 corresponds to a geometric object in Hn.

Definition 3.1.12. A hyperbolic m-plane of Hn is the intersection of Hn with an (m + 1)-

dimensional time-like vector subspace of Rn+1. For a given hyperbolic m-plane P = Hn ∩ V of

Hn, call the (m+ 1)-dimensional time-like subspace V the time-like subspace supporting P . A

hyperbolic (n− 1)-plane of Hn is called a hyperplane of Hn.

Let P be some m-dimensional hyperbolic plane in Hn, and let VP be the corresponding (m+1)-

dimensional time-like subspace in Rn+1. Recall from Chapter 2, by Lemma 2.1.10, for any (m+1)-

dimensional time-like vector space VP there is a space-like vector space W of dimension n−m such

that W = (VP )L. More specifically, we make the following observation.

Lemma 3.1.13. The subspace V is n-dimensional and time-like if and only if V L is 1-dimensional

and space-like.

Corollary 3.1.14. (i) If P is a hyperplane in Hn, and VP is the supporting time-like subspace,

then there is a unique positive space-like unit vector v such that 〈v〉 = V L
P . In this case, v is

called the positive unit vector Lorentz orthogonal to hyperplane P .

(ii) If v is a space-like vector in Rn+1, then there is a unique hyperplane P = vL ∩ Hn in Hn

such that the supporting time-like subspace of P is Lorentz orthogonal to v. Hyperplane P is

called the hyperplane Lorentz orthogonal to v.

Hyperbolic Characterization of Two Linearly Independent Space-Like Vectors.

The above corollary yields a one-to-one correspondence between hyperplanes and positive space-

like unit vectors, which we will study in the remainder of this section.

Definition 3.1.15. Let P be a hyperplane of Hn and let λ : R→ Hn be a geodesic line such that

λ(0) is in P . Then the hyperbolic line L = λ(R) is said to be Lorentz orthogonal to P if P is

the hyperplane of Hn Lorentz orthogonal to λ′(0).
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The following gives a characterization for the interaction between two hyperplanes P and Q in

Hn Lorentz orthogonal to two linearly independent space-like vectors v and w respectively. This

characterization provides a starting point for how to think about the characterization of how n

hyperplanes interact when they are Lorentz orthogonal to n linearly independent space-like vectors.

Theorem 3.1.16 ([19]). Let v and w be linearly independent space-like vectors in Rn+1. Then

(i) vectors v and w span a space-like subspace V if and only if hyperplanes P and Q of Hn,

Lorentz orthogonal to v and w respectively, intersect nontrivially;

(ii) vectors v and w span a time-like subspace V if and only if hyperplanes P and Q of Hn,

Lorentz orthogonal to v and w respectively, are disjoint and have a common Lorentz orthogonal

hyperbolic line.

(iii) vectors v and w span a light-like subspace V if and only if hyperplanes P and Q of Hn, Lorentz

orthogonal to v and w resp., meet at a point on the ideal boundary of Hn, at infinity.

Hyperbolic Distance and Hyperbolic Angle Between Hyperplanes. We have covered the

hyperbolic distance between points, and the hyperbolic angle between intersecting lines. This infor-

mation is generalized to the hyperbolic distance between disjoint hyperplanes, and the hyperbolic

angle between intersecting hyperplanes.

Theorem 3.1.17 ([19]). Let v and w be space-like vectors in Rn+1 that span a time-like vector sub-

space, and let P,Q be the hyperplanes of Hn Lorentz orthogonal to v, w, respectively. Then η(v, w)

is the hyperbolic distance from P to Q measured along the hyperbolic line N Lorentz orthogonal to

P and Q. Moreover, 〈v, w〉 < 0 if and only if v and w are oppositely oriented tangent vectors of N .

By this theorem, and (2.6), we get for hyperplanes P and Q corresponding to positive space-like

vectors v and w,

|〈v, w〉| = ||v||||w|| cosh dH(P,Q), (3.6)

Note that positive space-like unit vectors v and w may still yield a negative Lorentz inner

product, meaning they fit the description of acting as oppositely oriented tangent vectors of a

hyperbolic line N . That is, we can synonymously think of the Lorentz time-like angle between

space-like vectors v and w as the oriented hyperbolic distance between the hyperplanes Lorentz

orthogonal to v and w.
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Theorem 3.1.18 ([19]). Let v and w be linearly independent space-like vectors in Rn+1 such that

the vector subspace V spanned by v and w is light-like. Then 〈v, w〉 < 0 if and only if v and w are

on opposite sides of the 1-dimensional light-like subspace of V .

We recall theorem 2.1.16, and put this information together with the above theorem. For

hyperplanes P and Q that meet at infinity, any two corresponding space-like vectors v and w

Lorentz orthogonal to P and Q respectively, spanning a light-like subspace, satisfy that

|〈v, w〉| = ||v||||w||, (3.7)

and again, if positive space-like unit vectors are chosen to represent P and Q, it is always true that

|〈v, w〉| = 1, (3.8)

where 〈v, w〉 = 1 if both vectors are on the same side of the light-like line in V , and 〈v, w〉 = −1 if

they lie on opposite sides.

Said another way, equation (3.8) can be rewritten as

〈v, w〉 = cos η(v, w), (3.9)

where θ equals 0 or π, dependent upon whether 〈v, w〉 equals 1 or −1 respectively. Generalizing

from this idea, for positive space-like unit vectors v and w spanning a space-like subspace, we have

seen that

〈v, w〉 = cos η(v, w), (3.10)

where 0 < η(v, w) < π is the Lorentz space-like angle between v and w. Let P and Q be the

hyperplanes Lorentz orthogonal to v and w respectively.

Definition 3.1.19. Let P and Q be two hyperplanes in Hn that are either intersecting in Hn,

or meet only at infinity. Let v and w be space-like unit vectors Lorentz orthogonal to P and Q

respectively. The span of v and w is either time-like or light-like, respective to whether P and Q

are intersecting in Hn, or meeting only at infinity. The hyperbolic angle between hyperplanes

P and Q, θ(P,Q) is 0 ≤ θ(P,Q) = η(v, w) ≤ π, where 〈v, w〉 = cos η(v, w). The hyperbolic angle

between P and Q is 0 when v and w are both positive or both negative and span a light-like subspace.
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Hyperbolic angle θ(P,Q) = π when v and w span a light-like subspace and are opposite signs. In

both these cases, hyperplanes P and Q meet only at infinity. Hyperbolic angle θ(P,Q) = π/2 if and

only if space-like vectors v and w are Lorentz orthogonal.

Note that this definition is consistent with the hyperbolic angle between lines. Consider the

case where lines are the hyperplanes, in H2. For two lines L1 and L2 in H2 intersecting at L1(0) =

L2(0), with respective Lorentz orthogonal positive space-like unit vectors v1 and v2, 〈v1, v2〉 =

〈L′1(0), L′2(0)〉, so θ(L1, L2) is well-defined.

Theorem 3.1.20 ([19]). Let v be a space-like vector and w a positive time-like vector in Rn+1, and

let P be the hyperplane of Hn Lorentz orthogonal to v. Then η(v, w) is the hyperbolic distance from

w/
∣∣||w||∣∣ to P measured along the hyperbolic line N passing through w/

∣∣||w||∣∣ Lorentz orthogonal

to P . Moreover, 〈v, w〉 < 0 if and only if v and w are on opposite sides of the hyperplane of Rn+1

spanned by P .

If w is a positive time-like unit vector in Rn+1, and v a positive space-like unit vector with

hyperplane P in Hn Lorentz orthogonal to v, then by Theorem 2.1.19,

〈v, w〉 = sinh dH(P,w). (3.11)

Theorem 3.1.16 describes the geometric correspondence to a 2-dimensional vector subspace

spanned by two linearly independent space-like vectors. The next natural phase is to characterize

the hyperbolic geometric properties for an n-dimensional subspace spanned by n linearly indepen-

dent space-like vectors. This is broken into the three cases in which the subspace spanned is either

space-like, time-like, or light-like.

Space-Like Vectors Spanning a Space-Like Subspace.

Lemma 3.1.21. A collection of positive space-like unit vectors v1, . . . , vn in Rn+1 spans an n-

dimensional space-like subspace V if and only if there is a hyperbolic isometry φ taking the hyper-

planes P1, . . . , Pn in Hn, respectively Lorentz orthogonal to v1, . . . , vn, to hyperplanes Π1, . . . ,Πn,

where (0, . . . , 0, 1) is the only point common to all Πi, for i = 1, . . . , n.

Proof. Let v1, . . . , vn be a collection of positive space-like unit vectors in Rn+1, and let P1, . . . Pn

be the hyperplanes Lorentz orthogonal to v1, . . . , vn, respectively.
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Figure 3.3: An example of hyperplanes Lorentz orthogonal to positive space-like unit
vectors that span a space-like subspace. In R3, n = 2. A collection of n hyperplanes,
in blue, Lorentz orthogonal to space-like vectors spanning an n-dimensional space-like
subspace (left), must be isometric to a collection of n hyperplanes only meeting at the red
point, (0, . . . , 0, 1) (right).

Assume v1, . . . , vn form a basis for a space-like subspace V . Then since PO(n, 1) acts transitively

on m-dimensional space-like subspaces (theorem 2.2.2), there is a positive Lorentz transformation

φ that takes V to space-like subspace Rn = {(x1, . . . , xn, 0) ∈ Rn+1 : xi ∈ R}, and v1, . . . , vn to a

basis φ(v1), . . . , φ(vn)of Rn. For each i, Lorentz transformation φ takes the n-dimensional time-like

subspace Vi supporting Pi to the n-dimensional time-like subspace φ(Vi) that is Lorentz orthogonal

to φ(vi), and φ restricts to an isometry Φ = φ|Hn of Hn. So for each i, Φ(Pi) = φ(Vi) ∩Hn is a

hyperplane in Hn Lorentz orthogonal to φ(vi). Since each φ(vi) is in Rn, hyperplane Φ(Pi) must

necessarily contain point (0, . . . , 0, 1), and furthermore, this is the only point common to all Φ(Pi).

Now assume there is a hyperbolic isometry Φ of Hn such that, for each i = 1, . . . , n, we get

Φ(Pi) = Πi, where each Πi is a hyperplane of Hn containing point (0, . . . , 0, 1), and (0, . . . , 0, 1)

is the only point common to all Πi for i = 1, . . . , n. Isometry Φ extends to a positive Lorentz

transformation of Rn+1. Each hyperplane Πi = Φ(Pi) is supported by n-dimensional time-like

subspace Φ(Vi), where Vi supports Pi, and Φ(Vi) is Lorentz orthogonal to a space-like unit vector

Φ(vi). Since Πi contains (0, . . . , 0, 1), vector Φ(vi) is in Rn = {(x1, . . . , xn, 0) ∈ Rn+1 : xi ∈

R}. Call the time-like vector through (0, . . . , 0, 1) by v0. Since
⋂
i Φ(Vi) = 〈v0〉, consequently,

Φ(v1) + . . . + Φ(vn) = span{Φ(v1), . . . ,Φ(vn)} = Rn. Thus, v1, . . . , vn span an n-dimensional

space-like subspace.
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Figure 3.4: A collection of n hyperplanes, in blue, Lorentz orthogonal to space-like vectors
spanning an n-dimensional time-like subspace. This collection is characterized by being
commonly Lorentz orthogonal to a unique hyperbolic line, in red. In the n = 2 case, the
hyperplanes are also lines.

Any two hyperplanes Pi and Pj Lorentz orthogonal to space-like unit vectors vi and vj in the

span of an n-dimensional space-like subspace must intersect in Hn. This is a characteristic that is

unique to a collection of space-like unit vectors spanning a space-like subspace.

Space-Like Vectors Spanning a Time-Like Subspace.

Lemma 3.1.22. A collection of positive space-like unit vectors v1, . . . , vn in Rn+1 spans an n-

dimensional time-like subspace V if and only if for the hyperplanes P1, . . . , Pn Lorentz orthogonal

to v1, . . . , vn, respectively, there is a unique hyperplane Q supported by V such that the hyperbolic

angle θ(Pi, Q) for every i is π/2.

Proof. Let v1, . . . , vn be a collection of positive space-like unit vectors in Rn+1, and let P1, . . . , Pn

be the hyperplanes Lorentz orthogonal to v1, . . . , vn, respectively.

Assume v1, . . . , vn are a basis for a time-like subspace V . Then since V is time-like and n-

dimensional, Q = V ∩ Hn is a hyperplane in Hn. Additionally, since V is n-dimensional and

each 〈vi〉L is n-dimensional, the intersection V ∩ 〈vi〉L is an (n − 1)-dimensional subspace. The

Lorentz complement V L is a one-dimensional and space-like subspace. Denote the positive unit

vector in V L as v. Then 〈v, vi〉 = 0. Thus, the subspace span{v, vi} must be space-like, because
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Figure 3.5: A collection of hyperplanes, in blue, Lorentz orthogonal to space-like vectors
spanning an n-dimensional light-like subspace. All hyperplanes meet at a point in the
ideal boundary of hyperbolic space, picked out by the light-like line, in red.

|〈v, vi〉| < ||v||||w|| = 1. By theorem 3.1.16, Q intersects each Pi in Hn. Since, for each i, 〈vi, v〉 =

0 = cos η(vi, vQ), we get that θ(Pi, Q) = π/2 for each i.

Assume there is one and only one hyperplane Q such that θ(Pi, Q) = π/2 for every i. Then Q

is the intersection of an n-dimensional time-like subspace VQ with Hn that is Lorentz orthogonal

to a positive space-like unit vector vQ, so that vQ is the only positive space-like unit vector such

that 〈vQ, vi〉 = 0 for every i. This means that W = span{v1, . . . vn} must be time-like, and that

W ⊂ VQ. Moreover, VQ is the only n-dimensional time-like subspace that W is contained in. If

dimW < dimVQ, this would not hold. Thus, VQ = span{v1, . . . , vn}.

Any two hyperplanes Pi and Pj Lorentz orthogonal to space-like vectors vi, vj in the span of V ,

respectively, may be either disjoint, intersect, or meet only at infinity.

Space-Like Vectors Spanning a Light-Like Subspace.

Lemma 3.1.23. Let V be an n-dimensional light-like subspace in Rn+1 spanned by n linearly

independent space-like vectors v1, . . . , vn. Then there is no pair of vi, vj in v1, . . . , vn that spans a

time-like subspace.
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Proof. Let V be an n-dimensional light-like subspace in Rn+1. Let v1, . . . , vn be a collection of

linearly independent space-like vectors such that span{v1, . . . , vn} = V . Take any distinct vi and

vj within v1, . . . , vn and let W = span{vi, vj}. Then W cannot be time-like because if it was, then

W would contain a time-like vector by definition, which would mean V contains a time-like vector.

This violates the definition of a light-like subspace.

It is possible for a light-like vector space to contain a space-like subspace. Build one such

example by taking an (n− 1)-dimensional space-like subspace W , spanned by linearly independent

space-like vectors v1, . . . , vn−1. Pick space-like vector w such that span{v1, w} is light-like. Then

span{w, v1, . . . , vn−1} = W is an n-dimensional light-like subspace.

Lemma 3.1.24. A collection of positive space-like unit vectors v1, . . . , vn in Rn+1 spans an n-

dimensional light-like subspace V if and only if the corresponding hyperplanes P1, . . . , Pn Lorentz

orthogonal to v1, . . . , vn respectively, all meet at a unique point at infinity, and there is not a

hyperplane Pk distinct from Pi for every i = 1, . . . , n, that intersects every Pi at a hyperbolic angle

of π/2.

Proof. Let v1, . . . , vn be a collection of linearly independent positive space-like unit vectors in Rn+1

and let P1, . . . , Pn be the hyperplanes in Hn Lorentz orthogonal to v1, . . . , vn, respectively.

Assume v1, . . . , vn are a basis for a light-like subspace V . Since V is light-like and n-dimensional,

there is only one light-light line ` in V , and ` = V L. For each i = 1, . . . , n, let Wi be the

n-dimensional time-like Lorentz complement of vi in Rn+1 supporting Pi. Since 〈vi〉 ⊂ V , we

obtain that ` = V L ⊂ 〈vi〉L = Wi. Line ` represents a point x at infinity, in ∂Hn, so hyperplane

Wi ∩Hn = Pi meets x at infinity. There is no other point y at infinity common to every Pi, else

V is not light-like. Since V is not time-like, there is no hyperplane Pk intersecting every Pi at a

hyperbolic angle of π/2.

On the other hand, assume hyperplanes P1, . . . , Pn meet at a unique point at infinity, x, and

that there is no hyperplane that intersects every hyperplane Pi at hyperbolic angle π/2, for i =

1, . . . , n. Let 〈x〉 be the line through point x. Since every Pi meets x at infinity, the time-like

n-dimensional subspace Wi supporting Pi contains 〈x〉. Thus, the positive space-like unit vector vi

Lorentz orthogonal to Wi is contained in the n-dimensional light-like subspace V = 〈x〉L for each

i = 1, . . . , n, and W = span{v1, . . . , vn} is a light-like subspace contained in V . Assume that the
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dimension of W is m, where 1 ≤ m < n. Then dim(V ∩WL) ≥ 2, else V ∩WL = 〈x〉, meaning

that 〈x〉 + W = V , which would imply W = V . Since WL and V are light-like and both share

〈x〉, V ∩WL is light-like. Let vk be a positive space-like unit vector in V ∩WL. Let Wk be the

time-like subspace such that Wk = 〈vk〉L. Then Wk intersects Hn as a hyperplane that meets x

at infinity, and intersects every Pi at a hyperbolic angle of π/2, which is a contradictions. Thus,

W = span{v1, . . . , vn} = V .

3.1.5 Hyperbolic Ratio

Because the hyperbolic distance between a hyperplane or point in Hn, and a point in the ideal

boundary is infinite, a different isometric invariant is needed as a measurement between these

objects.

Definition 3.1.25. Let p1 and p2 both be fixed points, or both be fixed hyperplanes in Hn, and let

a be an ideal point. Let pt be a sequence of all points if p1 and p2 are points, or all hyperplanes if

p1 and p2 are hyperplanes, in Hn converging towards a, that is, pt → a as t→∞. Then

(a, p1, p2) = lim
t→∞

cosh dH(pt, p1)

cosh dH(pt, p2)
(3.12)

is the hyperbolic ratio of ideal point a with p1 and p2.

Lemma 3.1.26. Let p1 and p2 both be fixed points, or both be fixed hyperplanes in Hn, and let a

be an ideal point of Hn. Then the hyperbolic ratio (a, p1, p2) always exists, and

(a, p1, p2) = (`a, vp1 , vp2), (3.13)

where `a is the light-like line through point a, and where vp1 and vp2 are the positive unit vectors

corresponding to p1 and p2.

Proof. Let vp1 and vp2 be positive unit vectors, respectively corresponding to p1 and p2 in Hn, both

time-like or both space-like dependent up whether each of p1 and p2 are both hyperplanes or both

points. Let pt be a sequence of all hyperplanes if p1 and p2 are hyperplanes, or all points if p1 and

p2 are points, where pt → a as t→∞. Let vt be the corresponding sequence of all space-like or all

time-like positive unit vectors, respectively. Then

(a, p1, p2) = lim
t→∞

cosh dH(pt, p1)

cosh dH(pt, p2)
=
〈vt, vp1〉
〈vt, vp2〉

= (`a, vp1 , vp2) =
〈va, vp1〉
〈va, vp2〉

, (3.14)

where va is any vector in the light-like line `a corresponding to ideal point a.
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The hyperbolic ratio is always positive, making it a restriction of the concept of the Lorentz

ratio.

3.1.6 Basis Vectors Characterization

The rigidity theorems in Chapter 2 translate into rigidity theorems for objects in hyperbolic

Space and, as will be seen in Chapter 4, objects in the ideal boundary. Each of the rigidty theorems

in Chapter 2 used an independent subcollection in Rn+1, so now we translate what the correspond-

ing collections of hyperplanes and points in Hn look like in accordance with this. First, if a basis

for Rn+1 is made up of only positive space-like unit vectors, this corresponds to a collection of

hyperplanes with the following characterization.

Lemma 3.1.27. Let {v1, . . . , vn+1} be a collection of positive space-like unit vectors in Rn+1 where

{P1, . . . , Pn+1} are the collection of n+ 1 hyperplanes in Hn, where vi is Lorentz orthogonal to Pi

for each 1 ≤ i ≤ n+ 1. Then {vi} is a basis for Rn+1 if and only if the hyperplanes:

1. do not all meet a common unique point at infinity,

2. do not all commonly intersect a unique hyperplane at hyperbolic angle π/2, and

3. are not isometric to a collection of hyperplanes Π1, . . . ,Πn+1 that contain one common point

(0, . . . , 0, 1) in Hn.

This theorem is a conclusion drawn from the three main statements of the previous section.

Definition 3.1.28. Let Xk = {p1, . . . , pk} be a collection of k points in Hn, where 2 ≤ k ≤ n+ 1.

Collection Xk is an independent collection of k points in Hn if p1, . . . , pk do not all lie in a

common (k− 2)-plane in Hn. Here 1-plane refers to a line in Hn, and 0-plane refers to a point in

Hn.

Note that if Xk is an independent collection of points in Hn, then subcollection Xm of Xk,

where 2 ≤ m < k is also automatically an independent collection of m points in Hn.

Lemma 3.1.29. Let {p1, . . . , pk} be a collection of k points in Hn, where 2 ≤ k ≤ n + 1, and let

{v1, . . . , vk} be a collection of positive time-like unit vectors in Rn+1. Then {pi} is an independent

collection of k points in Hn if and only if {vi} is a linearly independent collection of vectors in

Rn+1.
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Note that if {p1, . . . , pk} is independent, then no three points pi, pj , pl in the collection are

collinear.

If a basis for Rn+1 is composed of all positive time-like unit vectors, then there is a corresponding

collection of points in Hn with the following criteria.

Corollary 3.1.30. A collection of n+ 1 points in Hn, {p1, . . . , pn+1} is independent if and only if

the corresponding collection of positive time-like unit vectors {v1, . . . , vn+1} is a basis for Rn+1.

3.2 Rigidity of Hyperbolic Points, (n− 1)-Planes, and Ideal
Points

We now have everything needed to translate theorem 2.3.12 into a statement regarding the

rigidity of intermingled collections of points, ideal points, and hyperplanes in Hn. This theorem

accomplishes three things: it reduces the amount of conformal invariant information used between

hyperplanes from the statements made in [13], it brings the statements made in [13] into the setting

of hyperbolic n-space, where hyperbolic points are able to be considered additionally, and it uses a

new conformal invariant (the hyperbolic ratio) so that the rigidity of intermingled collections can

be handled where they previously could not. The theorem is stated and proved below. Theorem

2.3.8 will be interpreted in Chapter 4, separately; the Lorentz invariant used is best interpreted

within the context of conformal geometry of Sn−1.

For the following theorem, η(pi, pj) and η(p′i, p
′
j) is used to denote hyperbolic distance dH(pi, pj) =

dH(p′i, p
′
j), when pi, pj and p′i, p

′
j are either pairs of points or pairs of disjoint hyperplanes in Hn,

and η(pi, pj) = η(p′i, p
′
j) denotes equal hyperbolic angles when pi, pj and p′i, p

′
j are intersecting

hyperplanes in Hn.

Theorem 3.2.1. Let C = {pα, pβ, pγ : α, β, γ ∈ A} and C′ = {p′α, p′β, p′γ : α, β, γ ∈ A} be two

collections where pα, p
′
α are points in Hn, pβ, p

′
β are hyperplanes in Hn, and pγ , p

′
γ are points at

infinity in ∂Hn, where no pγ , p
′
γ respectively lies on the boundary of any pβ, p

′
β. Let C and C′ contain

corresponding subcollections of either n+ 1 hyperplanes or n+ 1 points, {pi} and {p′i} in Hn, such

that η(pi, pj) = η(p′i, p
′
j) for each distinct pair 1 ≤ i, j ≤ n+ 1. Further, assume:

(i) If {pi} and {p′i} are hyperplanes in Hn, then {pi} and {p′i}, respectively:

(a) do not all meet a common unique point at infinity,
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(b) do not all commonly intersect a unique hyperplane at hyperbolic angle π/2, and

(c) are not isometric to a collection of hyperplanes Π1, . . . ,Πn+1 that contain one common

point (0, . . . , 0, 1) in Hn;

(ii) If {pi} and {p′i} are points in Hn, then {pi} and {p′i} are each independent subcollections of

n+ 1 points in Hn.

Then

η(pα, pi) = η(p′α, p
′
i), (3.15)

η(pβ, pi) = η(p′β, p
′
i), (3.16)

for each i, for all points pα, p
′
α, for all hyperplanes pβ, p

′
β in Hn, and (pγ , pi, pj) = (p′γ , p

′
i, p
′
j) for

each distinct pair i, j in the independent subcollection index, and all ideal points pγ , p
′
γ if and only

if there is a unique hyperbolic isometry φ belonging to I(Hn) such that φ(pα) = p′α, φ(pβ) = p′β,

and φ(pγ) = p′γ for all α, β, γ in A

Proof. Assume C and C′ are two collections of points pα, p
′
α in Hn, hyperplanes pβ, p

′
β in Hn, and

ideal points pγ , p
′
γ in ∂Hn with subcollection of n + 1 point or n + 1 hyperplanes {pi} and {p′i}

fitting the description above. Then C and C′ correspond to collections V = {vα, vβ, vγ : α, β, γ ∈

A} and V ′ = {v′α, v′β, v′γ : α, β, γ ∈ A}, respectively, of positive space-like unit vectors vα, v
′
α

Lorentz orthogonal to pα, p
′
α respectively, positive time-like unit vectors vβ, v

′
β through points pβ, p

′
β,

resp., and light-like lines `γ , `
′
γ in Rn+1 through ideal point pγ , p

′
γ , resp. Each of V and V ′ have

subcollections {vi} and {v′i} of n + 1 space-like vectors, if {pi} and {p′i} resp. are hyperplanes,

or n + 1 time-like vectors if {pi} and {p′i} are points in Hn. These subcollections {vi} and {v′i}

are both a basis of vectors for Rn+1 by Lemmas 3.1.27 and 3.1.29. Moreover, our set up gives us

that 〈pα, pi〉 = 〈p′α, p′i〉, 〈pβ, pi〉 = 〈p′β, p′i〉, and (pγ , pi, pj) = (p′γ , p
′
i, p
′
j) . Thus, by theorem 2.3.12,

and since all vectors are positive, there is a unique positive Lorentz transformation Φ such that

Φ(vα) = v′α, Φ(vβ) = v′β and Φ(vγ) = v′γ . Lorentz transformation Φ restricts to a unique isometry,

φ, of Hn. Thus, we get that φ(pα) = p′α, φ(pβ) = p′β, and φ(pγ) = p′γ , for all α, β, γ in A.

This rigidity result yields a statement for collections of all hyperbolic points, all hyperplanes,

intermingled hyperbolic points, hyperplanes, and ideal points. It does not say what to do if your

collections are entirely composed of ideal points. Moreover, there is another angle to explore this

statement from that has not yet been given attention. [13] state their results in the language of the
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geometry of balls and points in Sn−1, as their motivation was to generalize the work of [3]. One

motivation of this dissertation is to build upon the work of [3] and [13] as well, so we now turn our

attention to this context in the next chapter, as well as explore other rigidity questions within the

geometry of circles.
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CHAPTER 4

RIGIDITY OF SPHERES AND POINTS IN SN−1

In this chapter, we begin by building a dictionary, this time between the language of Lorentz

space and that of the geometry of spheres. hyperbolic space bridges the gap between the two, so

much of the lexicon translates directly from Chapter 3. In this chapter, however, we pay closer

attention to orientation-preserving and orientation-reversing transformations, and develop rigidity

statements that take both kinds of transformations into consideration. Here, the inversive ratio

between again translates to an invariant of the geometry, here called the inversive ratio of a point

and two circles. Moreover, the geometry of circles behaves surprisingly similarly to the geometry

of points in Euclidean space, so we develop a notion of a circle-line and circle-plane in order

to draw a correspondence between a collection of linearly independent vectors in Lorentz space

and what is deemed an independent collection of circles. We end by turning our attention to the

rigidity of general inversive distance circle packings. First, these circle configurations are discussed

in the context of convex circle-polyhedra, where a Cauchy-style rigidity theorem is presented. As

was discussed in the introduction, without the requirement of convexity, inversive distance circle

packings are not globally rigid, in general. The last topic of this dissertation is a look into how

much extra inversive distance information is sufficient for the global rigidity of general inversive

distance circle packings. Such a statement can have practical applications when convexity is not

guaranteed.

4.1 The Geometry of Spheres and Points in R̂n−1

The first thing to point out is that this is conformal geometry, and while it is developed in

R̂n−1, this information can be transferred to the setting of Sn−1 via stereographic projection.

The stereographic projection map is conformal, so all information concerning the invariants and

tranformations is preserved. Within this section, the geometry of spheres and points is developed

intrinsically. In the next section, we lay out the correspondence between the geometry developed

here, and the geometry of Lorentz space.
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Figure 4.1: Three examples of an inversion through a circle. Consider the inversion fixing
the black circle. This inversion takes each green circle (and disk) to the other and each
orange circle to the other. Since the purple circle is orthogonal to the black circle, it is
taken to itself. Each circle’s orientation is reversed.

4.1.1 Möbius Transformations and Inversive Transformations of R̂n−1

The reference for this section is [2]. A sphere in R̂n−1 will refer to an (n− 2)-sphere,

S = S(a, r) = {x ∈ Rn−1 : |x− a| = r}, (4.1)

where a ∈ Rn−1, and r > 0.

A reflection (or inversion) through S(a, r) is the function φ defined by

φ(x) = a+

(
r

|x− a|

)2

(x− a). (4.2)

When S(0, 1) = Sn−2, this is

φ(x) =
x

|x|2
. (4.3)

Definition 4.1.1. An inversive transformation acting in R̂n−1 is a finite composition of re-

flections through spheres.

Definition 4.1.2. The group of Inversive transformations acting in R̂n−1 is called the Inversive

group, and is denoted by Inv(R̂n−1).
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Theorem 4.1.3 ([2]). Every reflection is orientation-reversing and conformal.

Corollary 4.1.4 ([2]). A composition of an even number of reflections is orientation-preserving.

A composition of an odd number of reflections is orientation-reversing.

Definition 4.1.5. A Möbius transformation acting in R̂n−1 is an inversive transformation that

is orienation-preserving.

Note that any Möbius transformation is then a composition of an even number of reflections.

Definition 4.1.6. The Möbius group Möb(R̂n−1) acting in R̂n−1 is the subgroup of Inv(R̂n−1)

consisting of all Möbius transformations in Inv(R̂n−1).

The subgroup Möb(R̂n−1) is an index 2 subgroup of Inv(R̂n−1) since every inversive transfor-

mation is either orientation-preserving or orientation-reversing.

Theorem 4.1.7 ([2]). Let φ be any inversive transformation, and let Σ be any sphere in R̂n−1.

Then φ(Σ) is also a sphere.

Theorem 4.1.8 ([2]). Let Σ be any sphere, σ the reflection in Σ, and I the identity map. If φ is

any inversive transformation which fixes each x in Σ, then either φ = I or φ = σ.

Corollary 4.1.9 ([2]). Any two reflections are conjugate in Inv(R̂n−1).

Theorem 4.1.10 ([2]). Inv(R̂n−1) with the topology of uniform convergence in the chordal metric

is isomorphic as a topological group to the group O+(n, 1).

4.1.2 Absolute Cross Ratio of Points in R̂n−1

Definition 4.1.11. Given four distinct points x, y, u, v in R̂n−1, the absolute cross-ratio of these

points is

|x, y, u, v| = d(x, u)d(y, v)

d(x, y)d(u, v)
=
|x− u| · |y − v|
|x− y| · |u− v|

, (4.4)

where d is the chordal metric on R̂n−1.

Note that changing the order of x, y, u, and v will change the value of the absolute cross ratio,

so this value is considered up to ordered 4-tuples.

Theorem 4.1.12 ([2]). A map φ : R̂n−1 → R̂n−1 is an inversive transformation if and only if it

preserves absolute cross-ratios.
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4.1.3 The Geometry of Circles and Points in S2

We now lay out the intrinsic geometry of circles in S2. Note that all the information in the

section prior still holds.

Theorem 4.1.13 ([2]). Möb(S2) is isomorphic to SL(2,C)/{±λI} = PSL(2,C), where λ ∈ R.

Cross Ratio. A circle in S2 is the stereographic projection of a 1-sphere in R̂2 onto S2. When

considering objects in the 2-sphere, one advantage is one can move seamlessly between the equivalent

spaces S2, C, and R̂2. We do this now to define the cross ratio of 4 points.

Definition 4.1.14. Let x, y, u, v be points in S2 = Ĉ. Then the cross ratio of these points is

[x, y, u, v] =
(x− u)(y − v)

(x− y)(u− v)
, (4.5)

and [x, y, u, v] is a real number when x, y, u, v are points lying on a circle in S2.

Inversive Distance. It’s been established that for a given circle C, there are two open disks it

bounds and reflection IC fixing C either fixes the two disks (ie, IC is the identity), or swaps the

two disks. Because of this, we wish to develop a conformal invariant that keeps track of both angle

and orientation. The following definitions are referenced from [7], where the details are worked out

thoroughly.

Definition 4.1.15. A circle C is oriented in S2 if it is the boundary of the unique open disk D

that lies to the left of C as one travels in the direction of the orientation of C.

Any circle C bounds two open disks, one called the interior disk , D, and the other called the

exterior disk . An orientation must be established to distinguish one from the other; the interior

disk lies to the left as one travels in the direction of the orientation of C, and the exterior disk lies

to the right. In this chapter, unless otherwise specified, it is assumed that a circle C is oriented, so

that a given circle C comes equipped with interior disk D without explicitly mentioning it. If only

the boundary circle is being used, it will be described as an unoriented circle.

Now that orientation has been established, we develop the inversive distance between a pair

of circles. This is a real number assigned to a pair of circles that measures the interaction between

the pair. It is a conformal invariant and keeps track of orientation.
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Figure 4.2: An orientation on a circle chooses an interior disk. The interior disk is always
the disk to the left as one travels in the direction of the orientation.

Let oriented circles C1, C2 belong to S2, each bounding their respective interior disks D1 , and

D2. Let O be an oriented circle that is mutually orthogonal to both C1 and C2. Label the points

of intersection of C1 and C2 with D as follows: For C1, label the points of intersection with D as

z1 and z2, in order so that the oriented sub-arc z1z2 (from z1 to z2) is contained in the interior disk

C1. Denote the points of intersection of C2 with O as w1 and w2 in the same respect.

Definition 4.1.16. With C1 and C2 described as above, the inversive distance between C1 and

C2, denoted (C1, C2), is defined to be

(C1, C2) = 2[z1, z2, w1, w2]− 1

Where [z1, z2, w1, w2] =
(z1 − w1)(z2 − w2)

(z1 − z2)(w1 − w2)
is the cross ratio.

The invervise distance is a signed real number since the cross ratio is a signed real number. The

absolute inversive distance [C1, C2] = |(C1, C2)| is the absolute value of the inversive distance

between two circles. From this formula, it is clear that there is a Möbius transformation taking

one unoriented pair of circles C1, C2 to another pair of unoriented circles C ′1, C
′
2 if and only if

[C1, C2] = [C ′1, C
′
2].

Although called a “distance,” it is immediately obvious this is not a true distance function.

The inversive distance is not positive-definite, and it does not satisfy the triangle inequality. Cross
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Figure 4.3: From [7]. Six cases of inversive distance using oriented circles. (Top) inversive
distance is greater (right) or less than (left) 1; (middle) inversive distance is 1 (right) or
−1 (left); (bottom) inversive distance is between 0 and 1 (right) or between −1 and 0
(left).
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ratios are preserved by inversive transformations, and thus so are inversive distances. This is

used to see that it does not matter which oriented circle D mutually orthogonal to C1 and C2

is chosen to define inversive distance. If T is any Möbius transformation that set-wise fixes

circles C1 and C2, since T takes circles to circles and preserves angles, T (D) will also be a

circle orthogonal to both C1 and C2. As such, we can go from any circle D orthogonal to

C1 and C2 to any other circle D′ orthogonal via Möbius transformation since the placement

of any three points determine such a transformation. Furthermore, orientation of D is irrele-

vant: the relative orientation of circles C1 and C2 with D is what determines the sign of the

inversive distance. If the orientation of both C1 and C2 are reversed, then [z2, z1, w2, w1] =
(z2 − w2)(z1 − w1)

(z2 − z1)(w2 − w1)
=

(z1 − w1)(z2 − w2)

−(z1 − z2)(−(w1 − w2))
=

(z1 − w1)(z2 − w2)

(z1 − z2)(w1 − w2)
= [z1, z2, w1, w2] and so in-

versive distance is preserved. If only one of C1 or C2 has its orientation reversed, however, this

changes the sign of (C1, C2).

The inversive distance has many equivalent formulations, which are advantageous depending on

which information one knows about a given collection of circles. The formula above demonstrates

that inversive distance is a conformal invariant. Other formulas are advantageous because they

utilize other information commonly used with circles, such as angle, centers, and radii. Within this

chapter, we will study three other formulas. We immediately detail two of those formulas below.

Euclidean formula for inversive distance. This formula utilizes the radius and center mea-

surements of given circles, taking advantage of Euclidean distance as an invariants of rigid trans-

formations. Let C1 = C(a1, r1) and C2 = C(a2, r2) be circles in R̂2 with center a1, a2 and radius

r1, r2 respectively. Then

(C1, C2) =
|a1 − a2|2 − r2

1 − r2
2

2r1r2
(4.6)

While this formula is certainly useful in the right circumstances, we don’t keep track of centers

and radii in our current setting. As such, this formula won’t be used frequently in this chapter.

Hyperbolic formula for inversive distance. Since we are primarily interested in the conformal

geometry of circles, the well-established hyperbolic formula for inversive distance is of particular

interest. For oriented circles C1 and C2 in Ĉ:

(C1, C2) = cos θ

Value θ has two different meanings based on how the two circles interact. Case 1: C1 and C2

intersect. In this case, θ is the Euclidean angle at the point of intersection formed by a unit vector
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tangent to C1 at the point of intersection, in the direction of the orientation of C1, and a unit

vector tangent to C2 at the point of intersection, in the opposite direction of the orientation of C2.

When C1 and C2 intersect, the angle of intersection θ has a range of 0 ≤ θ ≤ π, which results in

an inversive distance (C1, C2) with a range of −1 ≤ (C1, C2) ≤ 1.

Case 2: C1 and C2 do not intersect. Since circles C1 and C2 are in Ĉ, we consider the extended

complex plane as the bounary at infinity for the upper half space model of hyperbolic space, H3, so

that unoriented circles C1 and C2 can be taken as the boundary of two planes P1 and P2 respectively

in H3. Interior disks C1 and C2 pick an oriented half-space H1 and H2 in H3, where ∂H1 = P1 an

∂H2 = P2. Then, θ(C1, C2) = idH3(P1, P2), so that

[C1, C2] = cos idH3(P1, P2) = cosh dH3(P1, P2). (4.7)

With consideration of the interior disks, (C1, C2) = cosh dH3(P1, P2) if halfspaces H1 and H2 are

disjoint, and 1 < (C1, C2) < ∞ in this case. The inversive distance (C1, C2) = − cosh dH3(P1, P2)

if the halfspaces intersect, in which case −∞ < (C1, C2) < −1.

Inversive distance has been set up within the context of circles in the Riemann sphere, but

inversive distance is a conformal invariant that any pair of n-dimensional spheres carries. The cross

ratio, Euclidean, and hyperbolic inversive distance formulas all generalize to higher dimensional

spheres in a natural way. We finish this primer on inversive distance with a property from [19].

Theorem 4.1.17 ([19]). For any inversive transformation φ and any unoriented spheres S and S′,

(φ(S), φ(S′)) = (S, S′). (4.8)

Inversive Ratio. Here, the inversive ratio between a point and two circles (or in higher dimensions,

a point and two spheres) is given below in terms of a sequence of inversive distances, along with a

method for calculating this invariant using center and radius information. In the next section, this

will be related back to the inversive ratio.

Definition 4.1.18. Let p be a point in S2, and let Ct be a sequence of oriented circles in S2 such

that Ct is converging to a as t → ∞. Let C and C ′ be two fixed, oriented circles such that p does

not lie on the boundary circles of C or C ′. Then

(p, C,C ′) = lim
t→∞

(Ct, C)

(Ct, C ′)
(4.9)
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is called the inversive ratio of p, C, and C ′.

If C = C(a, r), C = C(a′, r′), and Ct = Ct(at, rt), then

(p, C,C ′) = lim
t→∞

(Ct, C)

(Ct, C ′)
= lim

t→∞

|at − a|2 − r2
t − r2

2rtr

2rtr
′

|at − a′|2 − r2
t − (r′)2

. (4.10)

As t→∞, observe that in order for Ct to converge to p, we must get that at → p and rt → 0,

so in fact (p, C,C ′) limits to:

(p, C,C ′) =
(|p− a|2 − r2)r′

(|p− a′|2 − (r′)2)r
. (4.11)

Note that (p, C,C ′) is always defined, as long as p is not a point on either fixed circle C or C ′.

4.1.4 Independence of Circles and Points in S2

We outline a notion of dependent collections of circles with the goal in mind of developing a

notion of independent collections of circles. We begin with the classical notion of a coaxial family

of circles, also referred to in literature as a pencil of circles.

Coaxial Families of Circles. A brief summary of a coaxial family of circles is given below. We

develop the notion of coaxial families of circles in E2.

Just as two Euclidean points define a line, two circles define a coaxial family of circles. Two

circles, however, may intersect at one point, two points, or not at all. This leads to three different

types of coaxial families.

Two points a and b in E2 generate two mutually orthogonal families of circles. The hyperbolic

coaxial family, denoted Hab = {hλ : λ ∈ (0,∞)}, is a set of circles separating a from b whose

centers lie on a common line called the line of centers for Hab. The line of centers for Hab is

precisely the line through the points a and b. The elliptic coaxial family, denoted Eab = {eθ :

θ ∈ [0, π)}, is the collection of circles passing through a and b; the centers all lie on the line of

centers for Eab. Together, the two mutually orthogonal families are called a hyperbolic-elliptic

Apollonian system. The two families must satisfy the following axioms as an Apollonian system:

1. Every circle hλ of Hab meets every circle eθ of Eab orthogonally.

2. The circles of Hab are mutually disjoint and partition the punctured space E2 − {a, b}.

3. Each circle hλ separates a from b.

4. The family Eab consists of all the circles in E2 that pass through a and b.
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Figure 4.4: The elliptic family of circles intersecting at two points is orthogonal to the
hyperbolic family separating the two points.

5. The Euclidean centers of the circles in Hab lie on the circle e0, the extended line through a

and b.

6. The Euclidean centers of the circleses in Eab lie on the circle h1, the extended perpendicular

bisector of the segment [a, b].

As a → b, the hyperbolic-elliptic Apollonian system approaches the parabolic Apollonian sys-

tem, where Hab and Eab correspondingly limit to parabolic coaxial families Pl and Pl⊥ . Here,

l is the line determined by a and b, and the line of centers for parabolic coaxial family Pl. The line

l⊥ is the line orthogonal to l at point b. Pl is the family of circles which only intersect at point b

and are tangent to l; every circle in Pl is orthogonal to every circle in Pl⊥ .

In order to keep terminology brief, and in keeping with the theme of incidence geometry of

circles in this section, we label coaxial families of circles as circle-lines, or c-lines for short. We

add the qualifier parabolic, hyperbolic, or elliptic when referencing a specific type of coaxial family.
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Möbius Flows. Coaxial families are the flow lines for Möbius Flows, one-parameter subgroups

of PSL(2,C). Let F be a coaxial family; define µF : R→ PSL(2,C) where t 7→ [µF (t)], a class of

Möbius transformations parametrized by t.

Let F be a hyperbolic coaxial family with fixed points a and b. Then µF is an elliptic Möbius

flow, a subgroup of Möbius transformations in PSL(2,C) which are conjugate to the standard

rotation flow t 7→ Rλt, where Rλt is the rotation map z 7→ eλitz, λ ∈ R. By taking a Möbius

transformation that sends a to 0 and b to ∞, the direction of the flow assigned to the circles of F

is observed. Note that the flow fixes each of the circles of F and preserves the orthogonal elliptic

coaxial family F⊥ by taking any circle in F⊥ to another circle in F⊥.

If one takes F to be an elliptic coaxial family with fixed points a and b, then µF is a hyperbolic

Möbius flow, a subgroup of Möbius transformations in PSL(2,C) which are conjugate to the

standard scaling flow t 7→ Sλt, in which Sλt is the scaling map z 7→ eλtz. Each of the circles of

elliptic coaxial family F gets fixed by µF and orthogonal hyperbolic coaxial family F⊥ is preserved.

When F is a parabolic coaxial family fixing one point a, µF is called a parabolic Möbius

flow, a subgroup of Möbius transformations in PSL(2,C) conjugate to the standard translation

flow t 7→ Tλt, where Tλt is the translation map z 7→ z + λt. Each circle in F is fixed, while the

orthogonal parabolic coaxial family F⊥ is preserved.

Möbius flows are unique up to linear reparametrization, meaning [µF (t)] = [µF ◦ λ] = [µF (ct)],

where λ is a reparametrization map t 7→ ct, c ∈ R−{0}. The linear reparametrization is called the

speed of a Möbius flow. Note that distinct circles C1 and C2 determine a unique coaxial family

AC1,C2 . Any other two distinct circles in AC1,C2 will determine the same equivalence class of Möbius

flows as C1 and C2.

Möbius flows are useful because, given any two circles, a coaxial family F can be determined,

and thus, so can a Möbius flow µF . Any circle C can be flowed along the flow lines of F to find

µF (C) at some time t.

Circle-planes. A circle-plane , or c-plane for short, in S2 is a collection of circles in S2 that do

not exclusively belong to a c-line. There are three types of c-planes, and each can be described

based upon how any given circle in the c-plane interacts with a generating circle for the c-plane.
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Let C be a circle in S2. A hyperbolic c-plane HC is the collection of all circles in S2 which

are orthogonal to C, the generating circle of HC . Such a collection contains hyperbolic, elliptic,

and parabolic c-lines.

Let p be a point in S2. Point p can be thought of as a circle of radius 0. Then a parabolic c-

plane Pp is the collection of all circles passing through point p. Since every circle in the collection

must meet every other circle in the collection at point p, parabolic c-planes exclude hyperbolic

c-lines, but include both parabolic and elliptic c-lines.

The last kind of c-plane is called an elliptic c-plane. We begin by developing the model

elliptic c-plane. Start with circle C = S1, the equator of S2. Define ES1 to be the collection of

circles intersecting S1 at its antipodal points. That is, ES1 is the collection of great circles in S2.

This collection is the model elliptic c-plane. Now, for any C in S2, apply a rotation of the sphere

so that C is a latitudinal line on S2. Then use a hyperbolic Möbius flow fixing the north and south

pole to flow S1 to C. Then an elliptic c-plane EC is the collection ES1 under that composition of

maps.

Independent Collections of Circles in S2. In Euclidean space, a line can be uniquely deter-

mined by two distinct points; a plane is determined by three linearly independent points. Looking

at the incidence geometry of circles, a circle-line is determined by two distinct circles. A circle-plane

is determined by three independent circles in S2, that is, three circles that do not lie in a common

c-line. To elaborate, let C1, C2, C3 be three independent circles in S2. Three cases arise. In the

first case, the circles C1, C2, C3 have a circle O that is commonly orthogonal to all three which

happens as long as there is at least one circle that does not overlap the other two by an angle of

more than π/3; in this first case, O is called an ortho-circle , and O is the generating circle for the

hyperbolic c-plane HC . In the second case, all three circles have a common point of intersection p,

in which case, the point p generates the parabolic c-plane Pp. In the last case, neither a common

orthocircle nor point can be found between the three circles; this case is characterized by each of

C1, C2, and C3 overlapping one another, where C3 separates one intersection point of C1 and C2

from the other. In this last case, C1, C2, C3 generate an elliptic c-plane.

Definition 4.1.19. A collection of four distinct circles {C1, C2, C3, C4} in S2 is independent if

C1, C2, C3 and C4 don’t all belong to the same circle-plane.
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A key difference between the behavior of independence as a property of circles and independence

as a property of points in Euclidean space is that independence is a metric invariant of points, while

it is not an invariant of a general collection of circles. Any collection of points in Euclidean space

isometric to an independent set is itself independent. Inversive distance does not preserve the

property of independence for circles. As a quick example, take an independent collection of three

circles all with inversive distance 1 to one another, all mutually tangent at three distinct points.

Take another collection of three circles, this time, lying in a parabolic c-line. The collections are

iso-inversive to one another, but the latter collection is not independent.

Despite this, independence is incredibly useful in studying the rigidity of circle configurations.

We immediately begin using independence of circles as a tool for determining when a collection of

circles is Inversive-equivalent and Möbius-equivalent.

Lemma 4.1.20. Let C1, C2, C3 be three distinct, independent, unoriented circles, respectively, in

S2, and let f and g be two inversive transformations such that f(Ci) = g(Ci) for i = 1, 2, 3. Then,

either f = g, or else f = IC ◦ g, where IC is an inversion through a circle.

Proof. Let C1, C2, C3 be three independent unoriented circles. Let f, g be two Inversive transfor-

mations, and assume f(Ci) = g(Ci) for i = 1, 2, 3. We consider three cases.

Case 1: {C1, C2, C3} determine an elliptic c-plane. Then each circle intersects the other two

circles in two points, respectively, for a total of six intersection points. These points do not lie on

a common circle. Therefore, g−1 ◦ f is an inversive transformation fixing six points not lying on a

common circle, so g−1 ◦ f must be the identity, meaning f = g.

Case 2: {C1, C2, C3} determine a parabolic c-plane. Then there is one common point of in-

tersection p between C1, C2, C3. Since the three circles are independent, they do not belong to a

common c-line, and so at least one circle must intersect the other two circles in one other point

besides p, respectively, for a total of at least three intersection points. Without loss of generality,

let C1 be a circle intersecting C2 in p and one other point q, and intersecting C3 in p and one

other point q′, where necessarily, q 6= q′. Then g−1 ◦ f fixes points p, q, q′. The only inversive

transformations fixing three points is the identity, and the inversion through the circle determined

by three points. So either g−1 ◦ f is the identity map, or g−1 ◦ f is the inversion through the circle

C1, meaning either f = g or f = IC1 ◦ g.

60



Figure 4.5: An example of Case 1 (left), Case 2 (center), and Case 3 (right). In Case 3,
the ortho-circle is dashed.

Case 3: {C1, C2, C3} determine a hyperbolic c-plane. Then C1, C2, C3 are mutually orthogonal

to a circle O, for a total of at least three intersection points between O and the collection of circles

{C1, C2, C3}. inversive transformation g−1 ◦ f fixes C1, C2, C3, O, and the six intersection points.

Therefore, either g−1 ◦ f is the identity map, or g−1 ◦ f = IO, where IO is the inversion through

circle O.

Note in Case 2 that the only time g−1 ◦ f = IC1 is when C1 is mutually orthogonal to C2 and

C3; otherwise, an inversion through C1 would not fix C2 and C3.

Corollary 4.1.21. Let C1, C2, C3 be three distinct, independent circles in S2, and let f and g be

two Möbius transformations such that f(Ci) = g(Ci) for i = 1, 2, 3. Then f = g.

4.2 Correspondence Between Objects in S2 and Objects in
Lorentz Space R4

In this section, we carefully lay out the correspondence between the geometry of points and

spheres in Sn−1, and the geometry of subspaces in (n + 1)-dimensional Lorentz Space. This dic-

tionary is established through n-dimensional hyperbolic space sitting in Lorentz Space, Rn+1. We

have already established the presence of the Hyperboloid model Hn in Rn+1; we now focus pri-

marily on the Klein Model of hyperbolic n-space , which we refer to as Hn. First, identify the
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(n− 1)-dimensional unit sphere Sn−1 with the collection of x in Rn+1 such that x = (x1, . . . , xn, 1),

where x2
1+. . . , x2

n = 1. This is exactly the intersection of the light cone Cn with xn+1 = 1. Consider

the map φ

(x1, . . . , xn) 7→
(

2x1

1− |x|2
, . . . ,

2xn
1− |x|2

,
1 + |x|2

1− |x|2

)
, (4.12)

from Hn to the unit ball Bn1 = Hn, with boundary Sn−1, containing point (0, . . . , 0, 1). This map

is a Lorentz transformation, and is a hyperbolic isometry. Furthermore, for positive time-like unit

vectors vx through a point x in Hn, note that map φ takes vector vx and rescales it to a positive

time-like vector 1
λn+1

vx which has xn+1 = 1 for the last coordinate. Note, additionally, that any

(m+ 1)-dimensional time-like subspaces of Rn+1 intersecting Hn as m-planes also intersect Hn as

m-planes. This convenient placement of Sn−1 as the ideal boundary of Hn within Rn+1 provides a

setting in which to draw a parallel between collections of spheres and points in Sn−1 and subspaces

within Rn+1.

It’s already been noted that Inv(Sn−1) is isomorphic to O+(n, 1).

4.2.1 Spheres in Sn−1 Correspond to Space-Like Unit Vectors

Let S be an unoriented sphere in Sn−1. Then S is the intersection of an n-dimensional time-

like subspace V in Rn+1. There is a 1-dimensional subspace V L of space-like vectors Lorentz

orthogonal to V . When S is unoriented, the positive space-like unit vector v in V L is assigned as

default space-like vector corresponding to S.

When S is oriented, with an interior ball B, the space-like unit vector representing S with the

correct orientation is chosen in the following manner. First, assume S is not a great sphere in Sn−1.

Consider the intersection of line V L at xn+1 = 1. This intersection is a point c outside Hn ∪ Sn−1.

Point c is the vertex for an (n− 1)-dimensional cone CS which intersects Sn−1 as sphere S: every

line in CS is tangent to S at a unique point in S. Subspace V separates Rn+1 in two half-spaces.

If B is the ball corresponding to the half-space of V containing point c, use the positive space-like

unit vector v+ in V L to represent S. Otherwise, represent S with the negative space-like unit vector

v− in V L.

For simplicity, when S is the sphere in Sn−1 that is the intersection of n-dimensional time-like

V , and w is a vector in V L, we say that S is Lorentz orthogonal to w.
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Figure 4.6: In this picture, a sphere S refers to a circle in S2, and a ball refers to a disk.
Let VS be the time-like subspace supporting S. For an oriented sphere, interior ball B is
the intersection of a halfspace of VS with Sn−1. If the halfspace contains point c, represent
the oriented sphere with the positive space-like unit vector (left); else, the oriented sphere
is represented with the negative space-like unit vector (right).

Inversive Distance Correspondence. We first consider the inversive distance for intersecting

spheres. Let P and Q be hyperplanes in Hn, either intersecting in Hn, or whose boundaries meet

only once at infinity. While the Klein Model Hn is not a conformal model of hyperbolic space, the

angle of intersection between hyperplanes in Hn is given by the angle of intersection θ between the

spheres SP and SQ that are the boundary of each respective hyperplane in Sn−1. In Chapter 3, we

saw that cos θ is the Lorentz inner product between the space-like unit vectors Lorentz orthogonal

to P and Q respectively. Compare this with using the hyperbolic inversive distance formula for

spheres SP and SQ in Sn−1
1 , equipped with interior balls SP and SQ respectively. Then

(SP , SQ) = − cos θ = −〈vP , vQ〉, (4.13)

where 0 ≤ θ ≤ π is the angle of intersection between SP and SQ given by the space-like angle

between vP and vQ.

When P and Q are hyperplanes in Hn which are disjoint in Hn, and whose boundaries are

disjoint in Sn−1, the hyperbolic distance dH(P,Q) is used both for the inversive distance between
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SP and SQ, with the caveat that inversive distance is positive only when vP and vQ are oppositely

oriented tangent vectors for N , the unique hyperbolic line between P and Q, and positive all other

times. This gives us that

[SP , SQ] = cosh dH(P,Q) = |〈vP , vQ〉|. (4.14)

In general, our Lorentz inversive distance formula is

(SP , SQ) = −〈vP , vQ〉 (4.15)

making it the simplest formula for inversive distance thus far.

4.2.2 Points Correspond to Light-Like Lines

This correspondence has already been utilized in the previous chapter. Specifically, it was

already stated that light-like lines are used to represent points (x1, . . . , xn, 1) in the light cone

Cn, which are identified as points in the ideal boundary of Hn. These are the points such that

x2
1 + . . . + x2

n − 1 = 0, which are exactly the points in Sn−1
1 . Hence, any point in Sn−1 can be

represented by a light-like line and vice versa.

Absolute Cross Ratio Correspondence. We have already introduced the concept of an absolute

cross-ratio of light-like lines, taken from [13]. Here, we examine the relationship between the two

cross-ratios. This observation is stated by [13], but here a different explanation is provided.

Lemma 4.2.1. ([13]) If a point ai in Sn−1 corresponds to the line `i under ψ, then

|`1, `2, `3, `4| = |a1, a2, a3, a4|2. (4.16)

Proof. Let a1, a2, a3, a4 be points in Sn−1, and let `1, `2, `3, `4 be the respective lines corresponding

to the points under ψ. Choose light-like vectors vi = (ai1, . . . , ain, 1) for each `i. Then
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|`1, `2, `3, `4| =
〈v1, v3〉〈v2, v4〉
〈v1, v2〉〈v3, v4〉

=
(a11a31 + . . .+ a1na3n − 1)(a21a41 + . . .+ a2na4n − 1)

(a11a21 + . . .+ a1na2n − 1)(a31a41 + . . .+ a3na4n − 1)

=
−2(a11a31 + . . .+ a1na3n − 1)(−2)(a21a41 + . . .+ a2na4n − 1)

−2(a11a21 + . . .+ a1na2n − 1)(−2)(a31a41 + . . .+ a3na4n − 1)

=
(a2

11 − 2a11a31 + a2
31 + . . .+ a2

1n − 2a1na3n + a2
3n)(a2

21 − 2a21a41 + a2
41 + . . .+ a2

2n − 2a2na4n + a2
4n)

(a2
11 − 2a11a21 + a2

21 + . . .+ a2
1n − 2a1na2n + a2

2n)(a2
31 − 2a31a41 + a2

41 + . . .+ a2
3n − 2a3na4n + a2

4n)

=
[(a11 − a31)2 + . . .+ (a1n − a3n)2][(a21 − a41)2 + . . .+ (a2n − a4n)2]

[(a11 − a21)2 + . . .+ (a1n − a2n)2)][(a31 − a41)2 + . . .+ (a3n − a4n)2]

=
|a1 − a3|2|a2 − a4|2

|a1 − a2|2|a3 − a4|2
= |a1, a2, a3, a4|2.

4.2.3 The Inversive Ratio is the Lorentz Ratio

With the equality between inversive distance of spheres and Lorentz inner product of space-like

unit vectors established, the following statement should come as no surprise.

Lemma 4.2.2. Let a be a point in Sn−1, St a sequence of spheres converging toward point a as

t→∞, and Su, Sw two fixed spheres in Sn−1, such that a is not in the boundary spheres Su or Sw.

Let `a be the light-like line in Rn+1 through point a, let vt be the sequence of space-like unit vectors

converging to `, Lorentz orthogonal to St and let u and w be the space-like unit vectors Lorentz

orthogonal to Su and Sv. Then

(a, Su, Sw) = (`a, u, w). (4.17)

One interesting aspect to note is that the Euclidean inversive distance formula gives an alternate

formula for finding the inversive ratio in this instance, should radius and center data be available

for use.

4.2.4 Extrinsic View of Circle-Planes in S2

At this point, since the correspondences between spheres in Sn−1 and hyperplanes in Hn and

space-like unit vectors in Rn+1 have been established, it is clear that the characterization of col-

lections of n hyperplanes in Hn corresponding to linearly independent collections of n space-like
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unit vectors that was laid out in Chapter 3, leads to a characterization of collections of n spheres

in Sn−1 which correspond to linearly independent collections of n space-like unit vectors. This

correspondence does lead to a rigidity result for spheres and points in Sn−1. This result is basically

a restatement of the main theorem in Chapter 3, so it is left to the reader. Instead, our focus

now turns to a statement of the specific case when n = 3, where we may use the language of

independence of circles. This case is of particular interest because, as we will see, the notion of

independence of circles can be used to gain rigidity results for specialty collections of circles, such as

inversive distance circle packings. With this use in mind, in this section we focus on outlining the

corresondence between 3-dimensional collections of space-like vectors in R4 and the corresponding

collections of circles in S2.

Hyperbolic c-planes.

Lemma 4.2.3. A collection of circles {C1, . . . , Ck}, k ≥ 3 generates a hyperbolic c-plane if and only

if the corresponding collection of space-like unit vectors {v1, . . . , vk} spans a time-like 3-dimensional

subspace.

This is true because collection {C1, . . . , Ck} is a collection of circles in S2, acting as the bound-

aries at infinity to hyperplanes P1, . . . , Pk respectively in H3. Since the circles lie in a hyperbolic

c-plane, there is a unique circle O commonly orthogonal to all Ci, for i = 1, . . . , k, acting as

the boundary for hyperplane PO commonly orthogonal to each Pi, so collection {P1, . . . , Pk} is a

collection of hyperplanes satisfying the conditions of Lemma 3.1.22.

Elliptic c-planes.

Lemma 4.2.4. A collection of circles {C1, . . . , Ck}, with k ≥ 3, generates an elliptic c-plane if

and only if the corresponding collection of space-like unit vectors {v1, . . . , vk} spans a space-like

3-dimensional subspace.

Using the definition of an elliptic c-plane, there is an inversive transformation taking {C1, . . . , Ck}

to a collection of great circles in S2, and thus, respective hyperplanes P1, . . . , Pk are taken to hy-

perplanes Π1, . . . ,Πk, where (0, . . . , 0, 1) is the only point common to all Πi. Thus, collection

{P1, . . . , Pk} fit the conditions of Lemma 3.1.21.

Parabolic c-planes.
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Lemma 4.2.5. A collection of circles {C1, . . . , Ck}, where k ≥ 3, generates a parabolic c-plane

if and only if the corresponding collection of space-like unit vectors {v1, . . . , vk} spans a light-like

3-dimensional subspace.

Since {C1, . . . , Ck} lie on a parabolic c-plane, hyperplanes P1, . . . , Pk all meet at unique point

at infinity, and there is not a hyperplane PO distinct from Pi that is orthogonal to every Pi for

i = 1, . . . , k. Thus, the conditions of Lemma 3.1.24 are met.

Lemma 4.2.6. Every c-plane is exclusively parabolic, hyperbolic, or elliptic.

This is seen easily by considering the generating circles of each kind of c-plane, where the

generating circle of a parabolic c-plane is a point, and elliptic c-planes have imaginary generating

circles. Each kind of circle is supported by a three-dimensional subspace of R4, which is time-like

if the c-plane is hyperbolic, light-like if the c-plane is parabolic, and space-like if the c-plane is

elliptic.

4.2.5 Independent Collections of Points and Circles

As stated previously, any collection of four points corresponds to a collection of light-like lines

which is maximally independent in R4.

Lemma 4.2.7. A collection of four circles {C1, C2, C3, C4} in S2 is independent if and only if

space-like unit vectors {v1, v2, v3, v4} is a basis for Rn+1, where vi is Lorentz orthogonal to Ci for

each i = 1, 2, 3, 4.

4.2.6 Consistently Oriented Collections of Circles

Definition 4.2.8. Let {Ci} and {C ′i} be two collections of oriented circles in S2, and let {Oj}

and {O′j} respectively be the collection of orthocircles accompanying each collection; assume that no

circle in any collection is a great circle. Let {vi} and {v′i} respectively be the collection of space-

like unit vectors corresponding to {Ci} and {C ′i}; let {wj} and {w′j} be the collection of space-like

unit vectors corresponding to {Oj} and {O′j} respectively. Collections {Ci} and {C ′i} are oriented

consistently whenever each vi and each wj is positive if and only v′i is positive, and the sign of

〈vi, wj〉 is the same as the sign of 〈v′i, w′j〉 for every pair i, j.

Lemma 4.2.9. There is a Möbius transformation taking oriented circle pair C1, C2 to oriented

circle pair C ′1, C
′
2 if and only if (C1, C2) = (C ′1, C

′
2) and the circle pairs are oriented consistently.
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Lemma 4.2.10. Let {C1, C2, C3} and {C ′1, C ′2, C ′3} be two consistently oriented collections of inde-

pendent circles in S2, where (Ci, Cj) = (C ′i, C
′
j) for each distinct pair i, j. Then there is a Möbius

transformation f such that f(Ci) = C ′i for i = 1, 2, 3.

Proof. Let {C1, C2, C3} and {C ′1, C ′2, C ′3} be as above. By 4.2.9, there is a Möbius transformation

f where f(C1) = C ′1 and f(C2) = C ′2. Observe that (f(C3), C ′i) = (C ′3, C
′
i) for i = 1, 2. This means

there is a Möbius transformation g in the Möbius flow fixing C ′1 and C ′2 which takes f(C3) to C ′3.

The composition g ◦ f is a Möbius transformation taking one collection of oriented circles to the

other.

Lemma 4.2.11. Let {C1, C2, C3, C4} and {C ′1, C ′2, C ′3, C ′4} be two independent collections of circles,

oriented consistently, where (Ci, Cj) = (C ′i, C
′
j) for distinct pairs 1 ≤ i, j ≤ 4. Then there is a

unique Möbius transformation f such that f(Ci) = C ′i, for all i = 1, 2, 3, 4.

Proof. Assume without loss of generality that neither collection contains great circles, and no

collection has three circles orthogonal to a great circle. Move the collections by respective Möbius

transformations if necessary so this is true. Let {v1, v2, v3, v4} and {v′1, v′2, v′3, v′4} be the space-

like unit vectors corresponding to each respective collection of independent circles. Label the

orthocircles of each collection as {Oj} and {O′j}, respectively, with corresponding collections of

space-like unit vectors {wj} and {w′j}. Since the two collections of circles are independent, the space-

like vectors form a basis of R4, and there is a unique Lorentz transformation φ such that φ(vi) = v′i

for i = 1, 2, 3, 4. Since the two independent subcollections of circles are oriented consistently, φ

takes positive basis vectors to positive basis vectors, so φ is an inversive transformation.

By Lemma 4.2.10, there is a Möbius transformation σ such that σ(C1) = C ′1, σ(C2) = C ′2, and

σ(C3) = C ′3, so either σ = φ or σ = IC ◦ φ, where IC is an inversion. By Lemma 4.1.20, the

latter only happens when {C1, C2, C3} (and by extension {C ′1, C ′2, C ′3}) lie in a hyperbolic c-plane,

in which case, either σ = φ or σ = IO′ ◦ φ, where IO′ is the inversion through circle O′ orthogonal

to C ′1, C
′
2, C

′
3. Suppose σ = IO′ ◦ φ. Then φ(C4) = C ′4 6= σ(C4) = IO′(C ′4). Let u4 by the space-like

unit vector corresponding to σ(C4), and let w′ be the space-like unit vector corresponding to circle

O′. Then 〈u4, w
′〉 = −〈v4, w

′〉, contradicting the assumption that the independent subcollections

are oriented consistently. Therefore, σ = φ.
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4.2.7 Rigidity of Points and Circles in S2

Theorem 4.2.12. Let {aγ : γ ∈ A} and {a′γ : γ ∈ A} be two collections of distinct points in

Sn−1, each with subcollections of n+ 1 points {ai} and {a′i}, respectively, such that |ai, aj , ak, al| =

|a′i, a′j , a′k, a′l| for every distinct unordered 4-tuple 1 ≤ i, j, k, l ≤ n+ 1. Then,

|aγ , ai, aj , ak| = |a′γ , a′i, a′j , a′k|, (4.18)

for every distinct unordered triplet i, j, k in the independent subcollection, and all γ, if and only if

there is a unique inversive transformation Φ such that Φ(aγ) = a′γ for all γ ∈ A.

This theorem is a direct corollary of theorem 2.3.12, where each point aγ corresponds to a

light-like line `γ , and each absolute cross ratio of points corresponds to a cross ratio of light-like

lines. Any collection of n+ 1 points in Sn+1 automatically corresponds to a collection of light-like

lines whose vectors span Rn+1.

Theorem 4.2.13. Let {Cα, pβ : α, β ∈ A} and {C ′α, p′β : α, β ∈ A} be two collections of oriented

circles and points, respectively, in S2. Suppose each collection has an independent subcollection of

four circles, {C1, C2, C3, C4} and {C ′1, C ′2, C ′3, C ′4}, resp., none of which are great circles, where pβ

(resp. p′β) are not points in Ci (resp. C ′i) for each i = 1, 2, 3, 4, and where (Ci, Cj) = (C ′i, C
′
j) for

each distinct pair 1 ≤ i, j ≤ 4. Then there is a unique inversive transformation φ such that one

of the following holds: either φ(Cα) = C ′α and φ(pβ) = p′β for each α, β in A, or else φ(Cα) = C ′α

and φ(pβ) = p′β for each α, β in A, if and only if (Cα, Ci) = (C ′α, C
′
i) for each distinct pair α, i in

A and (pβ, Ci, Cj) = (p′β, C
′
i, C

′
j) for each distinct triple β, i, j in A.

Proof. Let {Cα, pβ : α, β ∈ A} and {C ′α, p′β : α, β ∈ A}, be two collections of oriented circles,

Cα, C
′
α resp, and points, pβ, p

′
β resp, in S2, each with respective independent collections of 4 circles,

{C1, C2, C3, C4} and {C ′1, C ′2, C ′3, C ′4}, such that (Ci, Cj) = (C ′i, C
′
j) for each distinct pair 1 ≤ i, j ≤

4. Assume that (Cα, Ci) = (C ′α, C
′
i) for every distinct pair of α, i, and (pβ, Ci, Cj) = (p′β, C

′
i, C

′
j) for

every distinct triple β, i, j. For each Cα, C
′
α, let Πα,Π

′
α respectively be the n-dimensional time-like

subspaces in Rn+1 intersecting S2 as Cα, C
′
α. Let vα, v

′
α be the corresponding space-like unit vectors

Lorentz orthogonal to Πα,Π
′
α respectively. Let `β, `

′
β be the light-like lines through each point pβ, p

′
β

respectively. Then 〈vα, vi〉 = 〈v′α, v′i〉, and (`β, vi, vj) = (`′β, v
′
i, v
′
j), so by Theorem 2.3.8, there is a

unique Lorentz transformation φ such that φ(vα) = v′α and φ(`β) = `′β for all α, β in A. If φ is a
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positive Lorentz transformation, then φ restricts to an inversive transformation. If φ is a negative

Lorentz transformation, then −φ restricts to an inversive transformation and −φ(−vα) = v′α for

every α in A.

Adding in the requirement that the independent subcollections must be consistently oriented

guarantees that the two collections are Möbius-congruent.

Corollary 4.2.14. Let {Cα, pβ : α, β ∈ A} and {C ′α, p′β : α, β ∈ A} be two collections with assump-

tions set up as in Theorem 4.2.13. Further suppose that the subcollections of independent circles

{C1, C2, C3, C4} and {C ′1, C ′2, C ′3, C ′4} are oriented consistently. Then φ is a Möbius transformation.

Corollary 4.2.14 is a direct consequence of Lemma 4.2.11.

For those that study configurations of circles via inversive geometry, it is atypical to have

this amount of inversive distance information for a configuration. It is more representative to

know inversive distance information in a polyhedral graph or triangulation pattern, ie, where there

known inversive distance information is distributed more evenly across the configuration. With this

in mind, we now use notion of independence in the setting of inversive distance circle packings.

4.3 Circle-Polyhedra

In Chapter 1, the connection between Euclidean polyhedra and configurations of circles was

discussed. In this way, aspects of rigidity theory can be applied in understanding the existence and

rigidity of configurations of circles. In this section, the concept of a circle-polyhedron is introduced,

and the main theorems from [5] are stated.

4.3.1 Preliminary Definitions and Observations

Definition 4.3.1. Let G be a graph, ie, a set of vertices V = V (G) and simple edges E = E(G).

A circle framework with adjacency graph G or c-framework for short, is a collection C =

{Cu : u ∈ V (G)} of oriented circles in S2 indexed by the vertex set of G. This is denoted G(C).

When uv is an edge in E(G), we say that oriented circles Cu and Cv are adjacent. For the

purposes of this dissertation, our focus lies with inversive distance circle packings: circle frameworks

with adjacency graphs which are triangulations of either D or S2. We will only consider collections

with finitely many circles.
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Definition 4.3.2. An edge-label is a real-valued function Γ : E(G) → R defined on the edge set

of G, and G together with an edge-label Γ is denoted GΓ and called an edge-labeled graph. The

c-framework G(C) is a circle realization of the edge-labeled graph GΓ provided (Cu, Cv) = Γ(uv)

for every edge uv of G; this is denoted as GΓ(C).

There are many qualifiers that may be attached to a c-framework. They are listed below.

Definition 4.3.3. A c-framework G(C)...

(i) is edge-uncoupled if each pair of adjacent circles has inversive distance greater than −1;

(ii) is edge-segregated if each pair of adjacent circles has an inversive distance greater than or

equal to 0;

(iii) is edge-separated if each pair of adjacent circles has an inversive distance greater than 1

(each pair of adjacent companion disks is disjoint);

(iv) is non-unitary if the inversive distance of each pair of adjacent circles is not equal to ±1;

(v) has deep overlaps if there is a pair of adjacent circles such that the inversive distance is

less than 0.

In this chapter, three different types of c-planes were described. We now turn our attention

specifically to hyperbolic c-planes as a means of introducing a notion of convexity to collections of

circles. Moving forward, a collections of circles being c-planar refers to the collection belonging to

a hyperbolic c-plane.

Definition 4.3.4. Let P be an abstract oriented spherical polyhedron, and let G = P (1) be its

polyhedral graph. A circle-polyhedron, or c-polyhedron, is an edge-uncoupled c-framework G(C)

such that for each face f = u1...un of P , the corresponding c-face Cf = {Cu1 , ..., Cun} is c-planar

(but not c-linear). The unique ortho-circle for Cf is denoted Of

With the notion of what it means to be a c-polyhedron established, convexity of such a collection

is described and then a Cauchy-type rigidity for c-polyhedra is introduced.

Definition 4.3.5. Let G(C) be a c-polyhedron based on abstract spherical polyhedron P . Let f be

a face of P . Then G(C) is convex with respect to f if its corresponding ortho-circle Of may be

oriented so that every circle in C is segregated from Of . G(C) is convex provided that it is convex

with respect to every face of P . We avoid any unneccessary pathologies by assuming that the circles

corresponding to three consecutive vertices in a face are never coaxial.
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When an ortho-circle Of may be oriented so that G(C) is convex with respect to f , the ortho-circle

is denoted Of
+.

Lemma 4.3.6 (Bowers, Bowers and Pratt). Let G(C) be a convex c-polyhedron based on P . Then

either:

(i) For every oriented face f = u1 . . . un of P , the circles Cu1 , . . . , Cun are met in that order as

one progresses around O+
f in direction of its orientation, starting at Cu1, or

(ii) For every oriented face f = u1 . . . un of P , the circles Cu1 , . . . , Cun are met in that order as

one progresses around O+
f in the direction opposite of its orientation, starting at Cu1.

If (ii) occurs, one can always apply the antipodal map to G(C) and reverse the orientation of

all circles. In this way, it is standard to assume a convex c-polyhedron for an oriented polyhedral

graph P has ortho-circles with orientation consistent with P .

The concept of a proper c-polyhedron is set up.

Definition 4.3.7. Let H = {h1, ..., hn} be a set of half-planes in H2 such that region P = h1 ∩

· · · ∩ hn is non-empty and the boundary line `i of each hi supports a non-empty segment, ray, or

line on the boundary of P . The lines `i for i = 1, · · · , n are oriented consistent with the orientation

P inherits from H2 so that ∂+hi = `i. If P is bounded, then it is a compact convex polygon in H2.

Whether or not P is bounded, we call P a convex hyperideal polygon.

Definition 4.3.8. The convex hyperideal polygon P determined by the cyclically ordered oriented

lines `1, · · · , `n is said to be proper provided the following two conditions are met.

1. Any hyperideal vertex, say for instance the hyperbolic line segment si,i+1 meeting the two

consecutive lines `i and `i+1 orthogonally, does not meet any other of the oriented lines

bordering P . This is equivalent to saying each hyperideal vertex lies in the region P .

2. The oriented lines `1, · · · , `n along with any hyperideal vertices form the boundary of a bounded

or compact convex polygon P ′ contained in P .

Definition 4.3.9. Let G(C) be a non-unitary convex c-polyhedron based on the oriented abstract

spherical polyhedron P with vertex set V = V (P ). For any vertex v ∈ V , give the interior of

the companion disk Dv to Cv a complete hyperbolic metric of constant curvature −1 making Dv

a model of the hyperbolic plane with its circle at infinity. Let f1, ...fn be the faces adjacent to v
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ordered cyclically about v with respect to the orientation of P . Let `i be the hyperbolic line in Dv

determined by the orthogonal intersection Dv ∩ Ofi+, but oriented oppositely to that of the ortho-

circle Ofi
+. Then G(C) is proper or compact at v if the oriented lines `1, ..., `n are the support

lines of a proper convex hyperideal polygon P (v) in Dv. The c-polyhedron G(C) then is proper or

compact provided it is proper at each of its vertices.

This definition of a proper c-polyhedron is analogous to that of a bounded Euclidean polyhedron.

Cauchy’s original rigidity theorem uses bounded polyhedra in the setup. Just like the classical

Cauchy rigidity theorem, the proof for showing two convex bounded face-congruent c-polyhedra

are globally congruent involves a combinatorial lemma (exactly the same as that used in Cauchy’s

rigidity theorem) and a geometric lemma relying on an arm lemma. Using bounded polyhedra

ensures the arm lemma works correctly.

4.3.2 Rigidity of Convex Circle-Polyhedra

Theorem 4.3.10 (Bowers, Bowers and Pratt). Any two convex and proper non-unitary c-polyhedra

with Möbius-congruent faces that are based on the same oriented abstract spherical polyhedron and

are consistently oriented are Möbius-congruent.

4.4 Rigidity of Inversive Distance Circle Packings

Inversive distance circle packings are special cases of c-polyhedra, so Theorem 4.3.10 can be

translated using the terminology outlined below. Here, we establish the state of the art for rigidity

of inversive distance circle packings, after which we show how inversive distance circle packings can

be modified to guarantee rigidity.

Definition 4.4.1. A circle packing for an oriented, edge-labeled triangulation KΓ of S2, with

edge label Γ : E(K)→ [0, π/2], is a collection C = {Cv : v ∈ V (KΓ)} of circles in S2 centered at the

vertices of the triangulation so that the two circles Cv and Cw meet at angle Γ(e) whenever e = vw

is an edge of K.

Definition 4.4.2. Let K be an oriented triangulation of S2. A unitary circle packing P of the

sphere is a collection of circles C = {Cv : v ∈ V (K)} centered at each vertex of V (K) respectively,

such that for each edge uv ∈ E(K), circles Cu and Cv are tangent. The underlying edges of the

circle packing are isomorphic to geodesics of the sphere.
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Definition 4.4.3. An inversive distance circle packing for an edge-labeled triangulation KΓ

of S2 is a collection C = {Cv : v ∈ V (K)} of circles in S2 with four properties:

(i) C is a circle realization for KΓ;

(ii) when uvw is a face of K, the centers of Cu, Cv, and Cw do not lie on a great circle.

(iii) joining all the pairs of centers of adjacent circles Cu and Cv by geodesic segments of S2

produces a triangulation of S2, necessarily isomorphic with K.

We now formally write out the complete statement of the celebrated Koebe-Andre’ev Thurston

Thoerem.

Theorem 4.4.4 (KAT Theorem for the Riemann sphere.). Let K be an oriented simplicial trian-

gulation of S2, different from the tetrahedral triangulation, and let Γ : E(K) → [0, π/2] be a map

assigning angle values to each edge of K. Assume that the following two conditions hold.

(i) If e1, e2, e3 for a closed loop of edges from K with Σ3
i=1Γ(ei) ≥ π, then e1, e2, and e3 form the

boundary of a face of K.

(ii) If e1, e2, e3, e4 form a closed loop of edges from K with Σ4
i=1Γ(ei) = 2π, then e1, e2, e3, and e4

form the boundary of the union of two adjacent faces of K.

Then there is a realization of K as a geodesic triangulation of S2 and a family C = {Cv : v ∈ V (K)}

of circles centered at the vertices of the triangulation so that the two circles Cv and Cw meet at angle

Γ(e) whenever e = vw is an edge of K. The circle packing C is unique up to Möbius transformations.

Circle packings where edge labels are between 0 and π/2 are completely characterized by the

Koebe-Andre’ev-Thurston Theorem abobe. As soon as the edge-label requirements are relaxed,

inversive distance circle packings with the conditions above are no longer guaranteed to be rigid.

Adding in the notion of convexity resolves the issue.

Theorem 4.4.5 (Bowers, Bowers and Pratt). Let C and C′ be two non-unitary, inversive distance

circle packings with ortho-circles for the same oriented edge-labeled triangulation of the 2-sphere S2.

If C and C′ are convex and proper, then there is a Möbius transformation T such that T (C) = C′.

This is an example of adding a qualitative condition instead of more quantitative conditions on

the configuration of circles. Of course, the work of [13] says that if all inversive distance information
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is known, then two collections are inversive-congruent, but, as was the case for Theorem 4.2.13,

not all inversive distance information between circles is necessary for rigidity. We now go through

the work of showing a sufficient amount of extra inversive distance information needed for Möbius-

congruence between two general inversive distance circle packings.

We begin with developing an analogous notion of consistent orientation between configurations

of circles which are not, in general, convex. The following definition is set up for inversive distance

circle packings of either S2 or D.

Definition 4.4.6. Let C and C′ be two inversive distance circle packings based on the same oriented,

edge-labeled triangulation K. Let f be a face of K. Then C and C′ are said to coincide with

respect to f if corresponding ortho-circles Of and O′f in C and C′ can be oriented so that every

oriented circle C in C is segregated from Of if and only if C ′ in C′ is segregated from O′f . C and

C′ coincide provided they coincide with respect to every face of K. Again, we additionally require

that no c-face is degenerate by assuming that the circles corresponding to the vertices of a face in

K are not coaxial.

Lemma 4.4.7. Let C and C′ be inversive distance circle packings based on the same oriented,

edge-labeled triangulation K, where C and C′ coincide. Then either:

(i) For every oriented face f = u1u2u3 of K, the circles C1, C2, C3 in C and C ′1, C
′
2, C

′
3 in C′ are

met in the same order as one progresses around O+
f and O+

f
′

respectively, in the direction of

each ortho-circle’s orientation, starting at C1 and C ′1, or

(ii) For every oriented face f = u1u2u3 of K, the circles C1, C2, C3 in C and C ′1, C
′
2, C

′
3 in C′ are

met in opposite order as one progresses around O+
f and O+

f
′

respectively, in the direction of

each ortho-circle’s orientation, starting at C1 and C ′1.

As in Lemma 4.3.6, if (ii) occurs, apply the antipodal map and change the orientation of all

the circles in one of the inversive distance circle packings to match the other. In this way, we

will assume (i) always occurs when C and C′ coincide, and in this case we say two such coincident

inversive distance circle packings are oriented consistently .

There is a distinction made here between two inversive distance circle packings being oriented

consistently, and an inversive distance circle packing being oriented consistently with a triangulation

K. In the latter, while C and C′ may be oriented consistently with one another, a face f of K may
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be consistently oriented with O+
f and O+

f
′
in C and C′ respectively, or f may be oppositely oriented

to both O+
f and O+

f
′
.

Observe that because of the assumption of (i) in Lemma 4.4.7 that two inversive distance

circle packings are oriented consistently then any two adjacent faces f = u1u2u3 and g = u3u2u4

of the underlying triangulation K, sharing unoriented edge e = u2u3, yield collections of circles

{C1, C2, C3, C4} and {C ′1, C ′2, C ′3, C ′4}, with their ortho-circles, that satisfy Definition 4.2.8.

Lemma 4.4.8. Let K be a triangulation of the closed disk D. There exists a vertex on the boundary

of D that is adjacent to exactly two other vertices in the boundary of D.

Proof. Let K be a triangulation of the closed disk D, with n vertices on the boundary of D. The

boundary vertices of K form a cycle in the 1-skeleton of K; label the boundary vertices v1, . . . , vn,

in a counter clockwise direction about this cycle, where vn is adjacent to v1. Consider the subgraph

G of the 1-skeleton of K with vertex set {v1, . . . , vn}, the boundary vertices of K, and edge set

composed of all the edges in K incident only to boundary vertices of K. Since v1v2 . . . vnv1 is a

cycle, each vertex vj is adjacent to at least two other vertices. If every vertex is degree 2, we are

done, so assume there is at least one vertex adjacent to a vertex other than its adjacencies in the

cycle v1v2 . . . vnv1. Travel the cycle in a counter clockwise direction starting from v1, and find an

outermost cycle, that is, a cycle which does not contain any other cycles. Label the outermost

cycle vivi+1 . . . vk−1vkvi. Then within this outermost cycle, vertex vj ∈ {vi+1, vi+2, . . . , vk−2, vk−1}

is not adjacent to any vertices except vj−1 and vj+1. Hence, vj is a degree 2 vertex in G, and so is

adjacent to exactly 2 vertices on the boundary of D in K.

We use this lemma to make the following observation. Let K be an oriented triangulation of

a closed disk D, and let v be a vertex in the boundary of D which is adjacent to exactly two

other vertices in the boundary. Then the oriented subgraph of K excluding the star of v is also

an oriented triangulation of D. The main theorems use induction on the number of vertices in a

triangulation, so this observation will be used frequently.

In this section, we continue to work under the assumption that all c-faces are non-degenerate,

and in particular, are hyperbolic. The key difference here is that the inversive distance circle

packings are not convex. However, we keep the condition that C and C′ realizing the same oriented

triangulation K must be consistently oriented with K. Circles belonging to C or C′ not in a c-face

generated by an orthocircle O may take on any inversive distance with O now.
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Figure 4.7: An example of a triangulation K of closed unit disk D (in blue), and a face-
spanning tree T (in red) of K∗, where K∗ is the dual graph of K.

Definition 4.4.9. Let K be an oriented triangulation of D. Consider the dual graph K∗ of K,

where a face f in K is represented by a vertex vf in K∗, and where there is an edge between vfi

and vfj whenever fi and fj are adjacent faces in K. Call a spanning tree of K∗ a face-spanning

tree T .

Let C be a circle packing based on K. Let fi and fj be adjacent faces sharing vertices u and w,

where fi = uvwi and fj = uvwj. When an edge eij of T between vertices vfi and vfj in dual graph

K∗ is equipped with an edge label β : E(T )→ R, then β(eij) = (Cwi , Cwj ), where Cwi and Cwj are

circles in C corresponding to vertices wi and wj respectively.

Theorem 4.4.10. Let K be an edge-labeled, oriented triangulation of D. Let C and C′ be two

inversive distance circle packings of D based on triangulation K, where C and C′ are coincident and

oriented consistently. Let T be an edge-labeled face spanning tree of K∗. There is a subgraph G of

T such that if C and C′ realize G, then there is a Möbius transformation φ such that φ(C) = C′.

Proof. We proceed by induction on the number of vertices in the triangulation K of D.
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For an edge-labeled, oriented triangulation K of D with n = 3 vertices, two inversive dis-

tance circle packings of D, labeled C3 and C′3, are independent collections of 3 circles in S2 with

supporting ortho-circles and corresponding equal inversive distances, so there is an inversive trans-

formation φ such that φ(C) = C′. Since orientations are consistent between C and C′, φ is a Möbius

transformation.

Assume for any edge-labeled, oriented triangulation Kn of D, and any two inversive distance

circle packings Cn and C′n realizing Kn that coincide and are oriented conistently, there is a subgraph

of a face-spanning tree of K∗n such that if Cn and C′n realize the subgraph, then Cn and C′n are

Möbius-equivalent. Let Kn+1 be an edge-labeled, oriented triangulation of D with n + 1 vertices,

where n+ 1 ≥ 4. Let Cn+1 and C′n+1 be two consistently-oriented inversive distance circle packings

realizing Kn+1. For vertex v on the boundary of D, adjacent to no more than two other vertices on

the boundary of D, let K(n+1),v be the oriented, edge-labeled triangulation excluding vertex v and

its incident edges. The subcollections C(n+1),v and C′(n+1),v, excluding circle Cv and C ′v in Cn+1 and

C′n+1 respectively, are each consistently-oriented inversive distance circle packings realizing K(n+1),v

which coincide, so by the inductive hypothesis, there is a subgraph G(n+1),v of the face-spanning

tree T(n+1),v such that if C(n+1),v and C′(n+1),v realize G(n+1),v, then there is a Möbius transformation

φ such that φ(C(n+1),v) = C′(n+1),v. We consider two cases to determine where φ sends Cv.

Case 1: Vertex v is adjacent to three or more vertices in Kn+1 that are not coaxial. In this case,

Gn+1 = G(n+1),v. Call the vertices in Kn+1 adjacent to v vertices u1, . . . , uk, where k ≥ 3. The

vertices u2, . . . , uk−1 are interior vertices, and u1 and uk are the two boundary vertices adjacent to

v. Label the corresponding oriented circles in Cn+1 and C′n+1 as Ci and C ′i for each i = 1, . . . , k.

Without loss of generality, assume that C1, C2, C3 are not coaxial. If Cn+1 and C′n+1 realize graph

Gn+1 = G(n+1),v, then for i = 1, 2, 3, (φ(Cv), C
′
i) = (φ(Cv), φ(Ci)) = (Cv, Ci) = (C ′v, C

′
i). Since

C1, C2, and C3 are not coaxial, {C1, C2, C3} is an independent collection of circles. Since Cn+1

and C′n+1 are coincide and oriented consistently, and {C ′1, C ′2, C ′3} is an independent collection of 3

circles in S2, by Lemma 4.2.11, there is a unique Möbius transformation σ such that σ(Cv) = C ′v

and σ(Ci) = C ′i for i = 1, 2, 3. Since φ(Ci) = σ(Ci) for i = 1, 2, 3 by Corollary 4.1.21, φ = σ, so

φ(Cv) = C ′v.

Case 2: Vertex v is adjacent to exactly two vertices in Kn+1, or all vertices which are coaxial.

Call the vertices in Kn+1 adjacent to v vertices u1, . . . , uk, where k ≥ 2. Label the corresponding
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Figure 4.8: Case 1 (left) and Case 2 (right). The vertices in Kn+1 used to uniquely place
vertex v in each case are shown in blue; in Case 2, the extra edge in Tn+1 needed to
uniquely place v is shown between the red vertices.

oriented circles in Cn+1 and C′n+1 as Ci and C ′i for i = 1, . . . k. Call the vertex opposite v, over edge

e12 = u1u2, vertex w with corresponding circle Cw and C ′w respectively. Label face f = u1vu2 and

g = u1u2w. Then in the dual graph K∗n+1 of Kn+1, consider the vertices vf and vg corresponding to

faces f and g. Let efg = vfvg be the edge between vf and vg. Call graph Gn+1 the subgraph of face-

spanning tree Tn+1 gotten from adding a labeled edge efg to G(n+1),v in K∗n+1. If Cn+1 and C′n+1

realize Gn+1, then (φ(Cv), C
′
i) = (Cv, Ci) = (C ′v, C

′
i) for each i = 1, 2 and (φ(Cv), C

′
w) = (C ′v, C

′
w).

Since {Cw, C1, C2} is an independent collection of 3 circles in S2 and Cn+1 and C′n+1 coincide and

are oriented consistently, by Lemma 4.2.11, there is a unique Möbius transformation σ such that

σ(Cv) = C ′v, σ(Cw) = C ′w, and σ(Ci) = C ′i for i = 1, 2. Since φ(Cw) = σ(Cw) and φ(Ci) = σ(Ci)

for i = 1, 2, by Corollary 4.1.21, φ = σ, so φ(Cv) = C ′v.

Note in Case 1 that only edges in G(n+1),v∗ = Gn+1 are used in addition to the triangulation of

Kn+1 to say the circle packings are Möbius-equivalent. In case 2, a new edge is added in Gn+1. This

presents an algorithm for constructing a subgraph of a face-spanning tree sufficient for making a

collection of circles rigid, where, in general, not all of a face-spanning tree need be used. Of course,

this can no longer be called an inversive distance circle packing, because the underlying structure

of known inversive distances is no longer a triangulation pattern.
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Theorem 4.4.11. Let K be an edge-labeled, oriented triangulation of S2. Let C and C′ be two

inversive distance circle packings of S2 based on triangulation K, where C and C′ are coincident

and consistently-oriented. Let T be a face spanning tree of K∗. There is an edge-labeled subgraph

G of T such that if C and C′ both realize the same edge-labeling on G, then there is a Möbius

transformation φ such that φ(C) = C′.

Proof. Let K be an edge-labeled, oriented triangulation of S2, and let C and C′ be two inversive

distance circle packings of S2 realizing K that coincide and are oriented consistently. Let v be

any vertex of K. Note that v must be adjacent to at least three vertices. Call these vertices

u1, . . . , uk, and call corresponding circles in C and C′, respectively, Ci and C ′i, for i = 1, . . . , k.

There must be three vertices in u1, . . . , uk such that the corresponding circles in C and C are not

coaxial; otherwise, there is a c-face which is degenerate in either C or C′. Without loss of generality,

assume the circles corresponding to i = 1, 2, 3 are not coaxial, so that collections {C1, C2, C3} and

{C ′1, C ′2, C ′3} are independent. Let Kv be a triangulation of D that excludes v and its incident

edges, with corresponding inversive distance circle packings of Cv and C′v of D which exclude circle

Cv and C ′v respectively corresponding to vertex v in K. Let Tv be a face-spanning tree of K∗v . Then

by Theorem 38, there is a subgraph Gv of Tv such that if Cv and C′v realize the same edge-labeling

on Gv, then there is a Möbius transformation φ where φ(Cv) = C′v. Furthermore, if this is the case,

then φ(Cv) = C ′v because (φ(Cv), C
′
i) = (Cv, Ci) = (C ′v, C

′
i) for i = 1, 2, 3, and C and C′ coincide

and are oriented consistently.
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